Although coupled to G(i/o) proteins, cannabinoid CB(1) receptors can also activate intracellular Ca(2+) ([Ca(2+)](i)) accumulation through not fully understood mechanisms. We report that in, human neuroblastoma SH-SY5Y cells, CB(1) activation with the specific agonist arachidonoylchloroethanolamide (ACEA), weakly elevates [Ca(2+)](i) and that this effect, when using low (1 -100 nM) concentrations of ACEA, is enhanced by the previous activation of G(q/11)-coupled M(3) muscarinic receptors with carbachol, dose-dependently and up to similar to 8-fold. A similar behaviour was also observed with carbachol and the G(i/o)-coupled delta-opioid receptor. Furthermore, stimulation of CB(1) receptors produced a concentration-dependent leftward shift of the elevation of [Ca(2+)](i) by delta-opioid receptors. These stimulatory effects were variedly attenuated by selective antagonists of each receptor, pertussis toxin, inhibitors of phospholipase C (U73122 and D609), and, when assessed in the presence of extracellular Ca(2+), by the block of voltage-activated calcium channels. Cholera toxin only slightly inhibited the G(q/11)-G(i/o)-mediated cross-talk, but induced a stronger inhibition of the G(i/o)-G(i/o)-mediated interaction. These findings suggest that activation of M(3) muscarinic receptors might produce a qualitative alteration of the signaling associated with G(i/o)-coupled receptors, and that sequential activation of CB(1) and delta-opioid receptors, both coupled to G(i/o) produces instead synergistic effects on [Ca(2+)] elevation.

Cannabinoid CB1 receptor elevation of intracellular calcium in neuroblastoma SH-SY5Y cells: interactions with muscarinic and delta-opioid receptors

Cristino L;De Petrocellis L;Di Marzo V
2009

Abstract

Although coupled to G(i/o) proteins, cannabinoid CB(1) receptors can also activate intracellular Ca(2+) ([Ca(2+)](i)) accumulation through not fully understood mechanisms. We report that in, human neuroblastoma SH-SY5Y cells, CB(1) activation with the specific agonist arachidonoylchloroethanolamide (ACEA), weakly elevates [Ca(2+)](i) and that this effect, when using low (1 -100 nM) concentrations of ACEA, is enhanced by the previous activation of G(q/11)-coupled M(3) muscarinic receptors with carbachol, dose-dependently and up to similar to 8-fold. A similar behaviour was also observed with carbachol and the G(i/o)-coupled delta-opioid receptor. Furthermore, stimulation of CB(1) receptors produced a concentration-dependent leftward shift of the elevation of [Ca(2+)](i) by delta-opioid receptors. These stimulatory effects were variedly attenuated by selective antagonists of each receptor, pertussis toxin, inhibitors of phospholipase C (U73122 and D609), and, when assessed in the presence of extracellular Ca(2+), by the block of voltage-activated calcium channels. Cholera toxin only slightly inhibited the G(q/11)-G(i/o)-mediated cross-talk, but induced a stronger inhibition of the G(i/o)-G(i/o)-mediated interaction. These findings suggest that activation of M(3) muscarinic receptors might produce a qualitative alteration of the signaling associated with G(i/o)-coupled receptors, and that sequential activation of CB(1) and delta-opioid receptors, both coupled to G(i/o) produces instead synergistic effects on [Ca(2+)] elevation.
2009
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Calcium
Cannabinoid
G-protein
Signaling
Lipid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/169632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact