Cells of the carotenoidless strain R-26.1 of Rhodobacter sphaeroides were grown in the presence of a high concentration (5 mM) of cobalt ions. The photosynthetic intracytoplasmic membranes were isolated and investigated by proteomic analysis using non-denaturating blue native electrophoresis in combination with LC-ESI-MS/MS. Comparison with intracytoplasmic membranes of cells grown under control conditions showed a change in the relative amount of proteins belonging to the photosynthetic apparatus, with net downregulation of light-harvesting complexes and increased concentration of the nude reaction center (RC), as well as upregulation of enzymes related to chemoorganotrophy. These effects represent possible bacterial adaptation so as to retrieve energy for metabolic processes from sources alternative to less efficient photosynthesis. The influence of cobalt on the photochemistry of the RC in cell extracts was also investigated by charge recombination. The kinetics of the charge recombination reaction was found to be slower in extracts from cells exposed to Co(2+), indicating that the reorganization of the photosynthetic apparatus also involves its photochemical core.

The photosynthetic membrane proteome of Rhodobacter sphaeroides R-26.1 exposed to cobalt

De Leo F;Trotta M;Ceci LR
2011

Abstract

Cells of the carotenoidless strain R-26.1 of Rhodobacter sphaeroides were grown in the presence of a high concentration (5 mM) of cobalt ions. The photosynthetic intracytoplasmic membranes were isolated and investigated by proteomic analysis using non-denaturating blue native electrophoresis in combination with LC-ESI-MS/MS. Comparison with intracytoplasmic membranes of cells grown under control conditions showed a change in the relative amount of proteins belonging to the photosynthetic apparatus, with net downregulation of light-harvesting complexes and increased concentration of the nude reaction center (RC), as well as upregulation of enzymes related to chemoorganotrophy. These effects represent possible bacterial adaptation so as to retrieve energy for metabolic processes from sources alternative to less efficient photosynthesis. The influence of cobalt on the photochemistry of the RC in cell extracts was also investigated by charge recombination. The kinetics of the charge recombination reaction was found to be slower in extracts from cells exposed to Co(2+), indicating that the reorganization of the photosynthetic apparatus also involves its photochemical core.
2011
Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)
Istituto per i Processi Chimico-Fisici - IPCF
Rhodobacter sphaeroides; Bioremediation; Intracytoplasmic membrane; Blue native PAGE; Proteomics
File in questo prodotto:
File Dimensione Formato  
prod_169954-doc_110840.pdf

non disponibili

Descrizione: articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 404.82 kB
Formato Adobe PDF
404.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/169643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact