Among enzymes involved in the synthesis of nucleotides and DNA, some exceptions have recently been found to the universal rule that enzymes act only on one enantiomer of a chiral substrate and that only one of the enantiomeric forms of chiral molecules may bind effectively at the catalytic site, displaying biological activity. The exceptions include: herpes virus thymidine kinases, cellular deoxycytidine kinase and deoxynucloside mono- and diphosphate kinases, cellular and viral DNA polymerases, such as DNA polymerase alpha, terminal transferase and HIV-1 reverse transcriptase. The ability of these enzymes to utilize unnatural L-beta-nucleosides or -nucleotides as substrate may be exploited from chemotherapeutic point of view.
Lack of stereospecificity of some cellular and viral enzymes involved in the synthesis of deoxyribonucleotides and DNA: molecular basis for the antiviral activity of unnatural L-beta-nucleosides.
Maga G;Tondelli L;Capobianco M;Focher F
1995
Abstract
Among enzymes involved in the synthesis of nucleotides and DNA, some exceptions have recently been found to the universal rule that enzymes act only on one enantiomer of a chiral substrate and that only one of the enantiomeric forms of chiral molecules may bind effectively at the catalytic site, displaying biological activity. The exceptions include: herpes virus thymidine kinases, cellular deoxycytidine kinase and deoxynucloside mono- and diphosphate kinases, cellular and viral DNA polymerases, such as DNA polymerase alpha, terminal transferase and HIV-1 reverse transcriptase. The ability of these enzymes to utilize unnatural L-beta-nucleosides or -nucleotides as substrate may be exploited from chemotherapeutic point of view.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


