The Fusion Advanced Study Torus (FAST) has been proposed as a possible European satellite facility to study fast-ion physics in deuterium plasmas under conditions relevant to a burning plasma. Energetic minority ions (H or 3He) accelerated by ion cyclotron resonance heating (ICRH), with dimensionless parameters close to those of fusion-born alphas in ITER, can be produced in FAST via 30 MW power ICRH minority heating. This work provides a first assessment of the extent to which the 3He fast-ion population can be diagnosed in FAST with a set of dedicated diagnostics for confined fast particles. Neutron emission spectroscopy (NES), gamma-ray spectroscopy (GRS) and collective Thomson scattering (CTS) diagnostics have been reviewed with a description of the state-of-the-art hardware and a preliminary analysis of the required lines of sight. The results of the analysis, based on numerical simulations of the spatial and energetic particle distribution function of the ICRH-accelerated ions for the standard FAST H-mode scenario, suggest that NES and GRS measurements can provide information on the fast 3He population effective tail temperature, with time resolutions in the range 20-100 ms. The proposed CTS diagnostic can measure the fast-ion parallel and perpendicular temperature with a spatial resolution of 5-10 cm and a time resolution of 10 ms. The paper provides a scientific basis for the prediction of the production and diagnosis of energetic ions in FAST

Production and Diagnosis of Energetic Particles in FAST

M Tardocchi;A Bruschi;L Figini;G Grosso;M Lontano;S Nowak;U Tartari;
2012

Abstract

The Fusion Advanced Study Torus (FAST) has been proposed as a possible European satellite facility to study fast-ion physics in deuterium plasmas under conditions relevant to a burning plasma. Energetic minority ions (H or 3He) accelerated by ion cyclotron resonance heating (ICRH), with dimensionless parameters close to those of fusion-born alphas in ITER, can be produced in FAST via 30 MW power ICRH minority heating. This work provides a first assessment of the extent to which the 3He fast-ion population can be diagnosed in FAST with a set of dedicated diagnostics for confined fast particles. Neutron emission spectroscopy (NES), gamma-ray spectroscopy (GRS) and collective Thomson scattering (CTS) diagnostics have been reviewed with a description of the state-of-the-art hardware and a preliminary analysis of the required lines of sight. The results of the analysis, based on numerical simulations of the spatial and energetic particle distribution function of the ICRH-accelerated ions for the standard FAST H-mode scenario, suggest that NES and GRS measurements can provide information on the fast 3He population effective tail temperature, with time resolutions in the range 20-100 ms. The proposed CTS diagnostic can measure the fast-ion parallel and perpendicular temperature with a spatial resolution of 5-10 cm and a time resolution of 10 ms. The paper provides a scientific basis for the prediction of the production and diagnosis of energetic ions in FAST
2012
Istituto di fisica del plasma - IFP - Sede Milano
Plasma physics
Nuclear plasma diagnostics
Nuclear diagnostics
plasma heating
gamma-ray spectroscopy
neutron emission spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/181286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact