TSH regulation of insulin and insulin-like growth factor-I (IGF-I) receptor kinases has been studied in FRTL5 cultured thyroid cells. Preincubation of intact cells with TSH increased by 2-fold insulin and IGF-I receptor autophosphorylation and phosphorylation of the p175 endogenous substrate for the receptors. Enhanced phosphorylations reached a maximum within 30 min, were maintained for 30 min more, and vanished after 120 min of TSH incubation. TSH dose-responses exhibited half-maximal and maximal effects at 1 and 10 pM, respectively. In vitro, insulin as well as IGF-I receptors purified from cells treated with 10 pM TSH also exhibited 2-fold enhanced receptor autophosphorylation and kinase activity toward the exogenous substrate poly(Glu,Tyr) (4:1). At variance with TSH, cell incubation with either 8-bromo-cAMP or the protein kinase-C activator 12-O-tetradecanoylphorbol-13-acetate inhibited insulin and IGF-I receptor kinases. In intact cells, TSH stimulation of insulin and IGF-I receptor kinases was accompanied by enhanced turnover of phosphate on autophosphorylated receptors, increased receptor tyrosine phosphorylation, and decreased receptor serine/threonine phosphorylation in response to insulin. Incubation of in vivo labeled insulin and IGF-I receptors with extracts from TSH-treated cells also decreased receptor phosphoserine and phosphothreonine content. Furthermore, preincubation of insulin and IGF-I receptors with extracts from TSH-treated cells enhanced in vitro autophosphorylation. The latter effect was inhibited by the serine/threonine phosphatase inhibitors fluoride and okadaic acid, but not by the tyrosine phosphatase inhibitor vanadate. The data suggest that in FRTL5 cells, TSH induces the activity of a Ser/Thr protein phosphatase, which dephosphorylates insulin and IGF-I receptors and enhances their endogenous kinases.

Thyrotropin regulates autophosphorylation and kinase activity in both the insulin and the insulin-like growth factor-I receptors in FRTL5 cells.

Condorelli G;Formisano P;Miele C;Beguinot F
1992

Abstract

TSH regulation of insulin and insulin-like growth factor-I (IGF-I) receptor kinases has been studied in FRTL5 cultured thyroid cells. Preincubation of intact cells with TSH increased by 2-fold insulin and IGF-I receptor autophosphorylation and phosphorylation of the p175 endogenous substrate for the receptors. Enhanced phosphorylations reached a maximum within 30 min, were maintained for 30 min more, and vanished after 120 min of TSH incubation. TSH dose-responses exhibited half-maximal and maximal effects at 1 and 10 pM, respectively. In vitro, insulin as well as IGF-I receptors purified from cells treated with 10 pM TSH also exhibited 2-fold enhanced receptor autophosphorylation and kinase activity toward the exogenous substrate poly(Glu,Tyr) (4:1). At variance with TSH, cell incubation with either 8-bromo-cAMP or the protein kinase-C activator 12-O-tetradecanoylphorbol-13-acetate inhibited insulin and IGF-I receptor kinases. In intact cells, TSH stimulation of insulin and IGF-I receptor kinases was accompanied by enhanced turnover of phosphate on autophosphorylated receptors, increased receptor tyrosine phosphorylation, and decreased receptor serine/threonine phosphorylation in response to insulin. Incubation of in vivo labeled insulin and IGF-I receptors with extracts from TSH-treated cells also decreased receptor phosphoserine and phosphothreonine content. Furthermore, preincubation of insulin and IGF-I receptors with extracts from TSH-treated cells enhanced in vitro autophosphorylation. The latter effect was inhibited by the serine/threonine phosphatase inhibitors fluoride and okadaic acid, but not by the tyrosine phosphatase inhibitor vanadate. The data suggest that in FRTL5 cells, TSH induces the activity of a Ser/Thr protein phosphatase, which dephosphorylates insulin and IGF-I receptors and enhances their endogenous kinases.
1992
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/182255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact