The electrophoresis of ~-N-2-furoylmethyl-~-lysin(ef urosine) was studied in an attempt to develop a method for the identification and quantitation of this compound in processed food. The effect of pH and composition of electrolyte solution on both the electrophoretic migration of furosine and the electroosmotic flow in a bare fused-silica capillary of 75 pm internal diameter was investigated. We demonstrate that the addition, to the running electrolyte solution, of N,N,N',N-tetramethyl-1,3-butanediamin(eT MBD) at concentrations ranging from 20 to 80 mM improves peak efficiency and can be used to modulate the migration time of furosine by controlling the electroosmotic flow which is reversed from cathodic to anodic. In a sample of dried milk subjected to a long period of storage under controlled conditions, furosine could be efficiently and reproducibly separated and quantitated by employing as the running electrolyte 60 mM TMBD titrated to pH 2.5. Capillary electrophoresis is a promising technique for the rapid identification and quantitation of furosine in processed food

Analysis of *-N-furoylmethyl-L-lysine (furosine) in dried milk by capillary electrophoresis with controlled electroosmotic flow using N,N,N',N'-tetramethyl-1,3-butanediamine in the running electrolyte solution

Danilo Corradini;Isabella Nicoletti;
1996

Abstract

The electrophoresis of ~-N-2-furoylmethyl-~-lysin(ef urosine) was studied in an attempt to develop a method for the identification and quantitation of this compound in processed food. The effect of pH and composition of electrolyte solution on both the electrophoretic migration of furosine and the electroosmotic flow in a bare fused-silica capillary of 75 pm internal diameter was investigated. We demonstrate that the addition, to the running electrolyte solution, of N,N,N',N-tetramethyl-1,3-butanediamin(eT MBD) at concentrations ranging from 20 to 80 mM improves peak efficiency and can be used to modulate the migration time of furosine by controlling the electroosmotic flow which is reversed from cathodic to anodic. In a sample of dried milk subjected to a long period of storage under controlled conditions, furosine could be efficiently and reproducibly separated and quantitated by employing as the running electrolyte 60 mM TMBD titrated to pH 2.5. Capillary electrophoresis is a promising technique for the rapid identification and quantitation of furosine in processed food
1996
Istituto per i Sistemi Biologici - ISB (ex IMC)
Capillary electrophoresis
Furosine
Food analysis
Additives
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/18870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact