We investigated several photosynthetic parameters of a virescent mutant of durum wheat and of its wild-type. Electron transport rate to ferricyanide was the same in the two genotypes when expressed on leaf area basis while O2 evolution of the leaf tissue in saturating light and CO2 was slightly higher in the yellow genotype. RuBPCase was also slightly higher. Quantum yield per absorbed light was similar in the two genotypes. P700 and Cyt f were less concentrated in the mutant while PS II was only marginally lower. The light response curve of CO2 assimilation indicated higher level of photosynthesis of the mutant in high light, which corresponded to a lower non-photochemical quenching compared to the wild-type. It is concluded that the reaction centres, cyt f and chlorophyll are not limiting factors of electron transport in wheat seedlings and that electron transport capacity is in excess with respect to that needed for driving photosynthesis. Since the differences in photosynthesis reflect differences in RuBPCase activity, it is suggested that this enzyme limits photosynthesis in wheat seedlings also at high light intensities.

Photosynthetic properties of leaves of a yellow green mutant of wheat compared to its wild type

Angelo Massacci;
1989

Abstract

We investigated several photosynthetic parameters of a virescent mutant of durum wheat and of its wild-type. Electron transport rate to ferricyanide was the same in the two genotypes when expressed on leaf area basis while O2 evolution of the leaf tissue in saturating light and CO2 was slightly higher in the yellow genotype. RuBPCase was also slightly higher. Quantum yield per absorbed light was similar in the two genotypes. P700 and Cyt f were less concentrated in the mutant while PS II was only marginally lower. The light response curve of CO2 assimilation indicated higher level of photosynthesis of the mutant in high light, which corresponded to a lower non-photochemical quenching compared to the wild-type. It is concluded that the reaction centres, cyt f and chlorophyll are not limiting factors of electron transport in wheat seedlings and that electron transport capacity is in excess with respect to that needed for driving photosynthesis. Since the differences in photosynthesis reflect differences in RuBPCase activity, it is suggested that this enzyme limits photosynthesis in wheat seedlings also at high light intensities.
1989
cyt f electron transport fluorescence quenching quantum yield reaction centres RuBPCase
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/194039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact