Though CSP scheduling models have tended to assume fairly general representations of temporal constraints, most work has restricted attention to problems that require allocation of simple, unit-capacity resources. This paper considers an extended class of scheduling problems where resources have capacity to simultaneously support more than one activity, and resource availability at any point in time is consequently a function of whether sufficient unallocated capacity remains. We present a progression of algorithms for solving such multiple-capacitated scheduling problems, and evaluate the performance of each with respect to problem solving ability and quality of solutions generated. A previously reported algorithm, named the Conflict Free Solution Algorithm (CFSA), is first evaluated against a set of problems of increasing dimension and is shown to be of limited effectiveness.
Profile-Based Algorithms to Solve Multiple Capacitated Metric Scheduling Problems
Cesta A;Oddi A;
1998
Abstract
Though CSP scheduling models have tended to assume fairly general representations of temporal constraints, most work has restricted attention to problems that require allocation of simple, unit-capacity resources. This paper considers an extended class of scheduling problems where resources have capacity to simultaneously support more than one activity, and resource availability at any point in time is consequently a function of whether sufficient unallocated capacity remains. We present a progression of algorithms for solving such multiple-capacitated scheduling problems, and evaluate the performance of each with respect to problem solving ability and quality of solutions generated. A previously reported algorithm, named the Conflict Free Solution Algorithm (CFSA), is first evaluated against a set of problems of increasing dimension and is shown to be of limited effectiveness.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.