In previous studies (Volonté and Merlo, 1996. J. Neurosci. Res. 45, 183-193) basilen blue was shown to be a P2 receptor antagonist which abrogated glutamate-mediated cytotoxicity in cerebellar neurones in primary culture. Our work has now been extended to evaluate the neuroprotective action of the compound in additional neuronal systems, as well as in a different paradigm of cell death. We show that basilen blue prevents L-glutamate-mediated neurotoxicity in rat cerebellar (90-100% inhibition), cortical (60-70%) and hippocampal (50%) neurones. Similarly, glutamate-dependent progressive darkening of cell bodies, loss of phase-brightness and rapid cellular swelling are inhibited. Basilen blue is significantly less toxic and more effective at blocking L-glutamate toxicity in mixed cortical/glial cultures, compared to its structural analogue cibacron blue. Moreover, its neuroprotective effect is correlated with the time of incubation with granule neurones. Other purinoceptor ligands, including 2,2'-pyridylisatogen, but not pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid 4-sodium, are also effective in preventing glutamate toxicity. Furthermore, basilen blue prevents serum deprivation- and low potassium-induced apoptotic cell death in cerebellar granule neurones. In summary, our data extend and reinforce the possibility of a potential therapeutic use of P2 receptor modulators as neuroprotective agents for the central nervous system.

Neuroprotective effects of modulators of P2 receptors in primary culture of CNS neurones

Volonté C;
1999

Abstract

In previous studies (Volonté and Merlo, 1996. J. Neurosci. Res. 45, 183-193) basilen blue was shown to be a P2 receptor antagonist which abrogated glutamate-mediated cytotoxicity in cerebellar neurones in primary culture. Our work has now been extended to evaluate the neuroprotective action of the compound in additional neuronal systems, as well as in a different paradigm of cell death. We show that basilen blue prevents L-glutamate-mediated neurotoxicity in rat cerebellar (90-100% inhibition), cortical (60-70%) and hippocampal (50%) neurones. Similarly, glutamate-dependent progressive darkening of cell bodies, loss of phase-brightness and rapid cellular swelling are inhibited. Basilen blue is significantly less toxic and more effective at blocking L-glutamate toxicity in mixed cortical/glial cultures, compared to its structural analogue cibacron blue. Moreover, its neuroprotective effect is correlated with the time of incubation with granule neurones. Other purinoceptor ligands, including 2,2'-pyridylisatogen, but not pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid 4-sodium, are also effective in preventing glutamate toxicity. Furthermore, basilen blue prevents serum deprivation- and low potassium-induced apoptotic cell death in cerebellar granule neurones. In summary, our data extend and reinforce the possibility of a potential therapeutic use of P2 receptor modulators as neuroprotective agents for the central nervous system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/203168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 54
social impact