Visible photoluminescence at 1.62 eV has been observed at room temperature from fluorinated and hydrogenated nanocrystalline silicon (nc-Si:H,F) produced in a typical plasma enhanced chemical vapor deposition system. The use of SiF4-SiH4-H2 mixture, because of the H2 dilution and the presence of SiF4, favours the amorphous - crystalline transition through the etching process of the amorphous phase. The x - ray diffraction measurements give an average grain size of about 100 angstrom. The presence of these nanocrystals shifts the absorption edge of the films towards higher energy. An energy gap of 2.12 eV is estimated, although the hydrogen content in the material is only 4.5 at. %. The temperature dependence of the photoluminescence behaves similarly to that of porous silicon.

Deposition of photoluminescent nanocrystalline silicon films by SiF4-SiH4-H2 plasmas

G Cicala;
1997

Abstract

Visible photoluminescence at 1.62 eV has been observed at room temperature from fluorinated and hydrogenated nanocrystalline silicon (nc-Si:H,F) produced in a typical plasma enhanced chemical vapor deposition system. The use of SiF4-SiH4-H2 mixture, because of the H2 dilution and the presence of SiF4, favours the amorphous - crystalline transition through the etching process of the amorphous phase. The x - ray diffraction measurements give an average grain size of about 100 angstrom. The presence of these nanocrystals shifts the absorption edge of the films towards higher energy. An energy gap of 2.12 eV is estimated, although the hydrogen content in the material is only 4.5 at. %. The temperature dependence of the photoluminescence behaves similarly to that of porous silicon.
1997
Istituto di Nanotecnologia - NANOTEC
Chemical vapor deposition
Energy gap
Nanostructured materials
Photoluminescence
Porous silicon
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/204348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact