A recovery procedure has been developed to correct instrument line-shape distortions observed in Fourier transform spectroscopy. The procedure can be described as a phase-error correction performed in the spectral domain to correct for path-difference-dependent phase errors observed in sharp spectral features. The technique has been applied successfully to high-resolution atmospheric emission spectra. The inherent broadening of the real features has been separated accurately from instrumental distortions. Using models for the path-difference-dependent error sources and data from two narrow window regions at 50 and 118 cm-1, we show that the distortion has a simple dependence on the spectral frequency.

Correction of instrument line shape distorsions in Fourier transform spectroscopy as a phase error correction problem

P Raspollini;M Ridolfi;B Carli;
1998

Abstract

A recovery procedure has been developed to correct instrument line-shape distortions observed in Fourier transform spectroscopy. The procedure can be described as a phase-error correction performed in the spectral domain to correct for path-difference-dependent phase errors observed in sharp spectral features. The technique has been applied successfully to high-resolution atmospheric emission spectra. The inherent broadening of the real features has been separated accurately from instrumental distortions. Using models for the path-difference-dependent error sources and data from two narrow window regions at 50 and 118 cm-1, we show that the distortion has a simple dependence on the spectral frequency.
1998
Istituto di Fisica Applicata - IFAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/205512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
social impact