A simple model of an emission Fourier-transform spectrometer is provided for a beam splitter with infinitesimal thickness but with general optical properties otherwise. Using the principle of conservation of energy, we derived the rigorous expressions that relate the interferograms from three different signals (source, reference, and beam-splitter emission), which are simultaneously observed by the detector. The relationship among phase and amplitude of the three interferograms is evaluated. The results indicate that the behavior of a Fourier-transform emission spectrometer may be more complicated than what is assumed in some models. Calibration procedures should reflect the implications of this rigorous approach.

Effect of beam splitter emission in Fourier-transform emission spectroscopy

B Carli;L Palchetti;P Raspollini
1999

Abstract

A simple model of an emission Fourier-transform spectrometer is provided for a beam splitter with infinitesimal thickness but with general optical properties otherwise. Using the principle of conservation of energy, we derived the rigorous expressions that relate the interferograms from three different signals (source, reference, and beam-splitter emission), which are simultaneously observed by the detector. The relationship among phase and amplitude of the three interferograms is evaluated. The results indicate that the behavior of a Fourier-transform emission spectrometer may be more complicated than what is assumed in some models. Calibration procedures should reflect the implications of this rigorous approach.
1999
Istituto di Fisica Applicata - IFAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/205514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact