One of the recurring problems in magnetic reconnection is the identification of the appropriate generalized Ohm's law. In weakly collisional plasmas with a strong magnetic guide field component, a fluid model may be adopted, where electron inertia and the electron pressure gradient play important roles. In the absence of collisions, electron inertia provides the mechanism for magnetic field-line breaking. Electron compressibility alters significantly the structure of the reconnection region and allows for faster reconnection rates, which are consistent with the fast relaxation times of sawtooth oscillations in tokamak plasmas. The Hall term may also become important when the guide field is weak. The very possibility of nonlinear, irreversible magnetic reconnection in the absence of dissipation is addressed. We show that in a collisionless plasma, magnetic islands can grow and reach a saturated state in a coarse-grained sense. Magnetic energy is transferred to kinetic energy in smaller and smaller spatial scale lengths through a phase mixing process. T. he same model is then applied to the interpretation of driven reconnection events in the vicinity of a magnetic X-line observed in the VTF experiment at MIT. The reconnection is driven by externally induced plasma flows in a background magnetic configuration that has a hyperbolic null in the reconnection plane and a magnetic guide field component perpendicular to that plane. In the limit where the guide field is strong, assuming the external drive to be sufficiently weak fora linear approximation to hold, a dynamic evolution of the system is obtained which does not reach a stationary state. The reconnection process develops in two phases: an initial phase, whose characteristic rate is a fraction of the Alfven frequency, and a later one, whose rate is determined by the electron collision frequency.

Recent advances in collisionless magnetic reconnection

Borgogno D.;Califano F.;Grasso D.;Ottaviani M.;Pegoraro F
2002

Abstract

One of the recurring problems in magnetic reconnection is the identification of the appropriate generalized Ohm's law. In weakly collisional plasmas with a strong magnetic guide field component, a fluid model may be adopted, where electron inertia and the electron pressure gradient play important roles. In the absence of collisions, electron inertia provides the mechanism for magnetic field-line breaking. Electron compressibility alters significantly the structure of the reconnection region and allows for faster reconnection rates, which are consistent with the fast relaxation times of sawtooth oscillations in tokamak plasmas. The Hall term may also become important when the guide field is weak. The very possibility of nonlinear, irreversible magnetic reconnection in the absence of dissipation is addressed. We show that in a collisionless plasma, magnetic islands can grow and reach a saturated state in a coarse-grained sense. Magnetic energy is transferred to kinetic energy in smaller and smaller spatial scale lengths through a phase mixing process. T. he same model is then applied to the interpretation of driven reconnection events in the vicinity of a magnetic X-line observed in the VTF experiment at MIT. The reconnection is driven by externally induced plasma flows in a background magnetic configuration that has a hyperbolic null in the reconnection plane and a magnetic guide field component perpendicular to that plane. In the limit where the guide field is strong, assuming the external drive to be sufficiently weak fora linear approximation to hold, a dynamic evolution of the system is obtained which does not reach a stationary state. The reconnection process develops in two phases: an initial phase, whose characteristic rate is a fraction of the Alfven frequency, and a later one, whose rate is determined by the electron collision frequency.
2002
INFM (attivo dal 18/11/1923 al 31/12/2021)
File in questo prodotto:
File Dimensione Formato  
prod_263404-doc_72447.pdf

solo utenti autorizzati

Descrizione: Recent advances in collisionless magnetic reconnection
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 534.4 kB
Formato Adobe PDF
534.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/207507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 89
social impact