In a collisionless plasma, when reconnection instability takes place, strong shear flows may develop. Under appropriate conditions these shear flows become unstable to the Kelvin-Helmholtz instability. Here, we investigate the coupling between these instabilities in the framework of a four-field model. Firstly, we recover the known results in the low ? limit, ? being the ratio between the plasma and the magnetic pressure. We concentrate our attention on the dynamical evolution of the current density and vorticity sheets which evolve coupled together according to a laminar or a turbulent regime. A three-dimensional extension in this limit is also discussed. Secondly, we consider finite values of the ? parameter, allowing for compression of the magnetic and velocity fields along the ignorable direction. We find that the current density and vorticity sheets now evolve separately. The Kelvin-Helmholtz instability involves only the vorticity field, which ends up in a turbulent regime, while the current density maintains a laminar structure.

Coupling between reconnection and Kelvin-Helmholtz instabilities in collisionless plasmas

D. Grasso;D. Borgogno;F. Pegoraro;E. Tassi
2009

Abstract

In a collisionless plasma, when reconnection instability takes place, strong shear flows may develop. Under appropriate conditions these shear flows become unstable to the Kelvin-Helmholtz instability. Here, we investigate the coupling between these instabilities in the framework of a four-field model. Firstly, we recover the known results in the low ? limit, ? being the ratio between the plasma and the magnetic pressure. We concentrate our attention on the dynamical evolution of the current density and vorticity sheets which evolve coupled together according to a laminar or a turbulent regime. A three-dimensional extension in this limit is also discussed. Secondly, we consider finite values of the ? parameter, allowing for compression of the magnetic and velocity fields along the ignorable direction. We find that the current density and vorticity sheets now evolve separately. The Kelvin-Helmholtz instability involves only the vorticity field, which ends up in a turbulent regime, while the current density maintains a laminar structure.
2009
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
File Dimensione Formato  
prod_263749-doc_72595.pdf

accesso aperto

Descrizione: Coupling between reconnection and Kelvin-Helmholtz instabilities in collisionless plasmas
Licenza: Creative commons
Dimensione 898.23 kB
Formato Adobe PDF
898.23 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/212393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact