Electrospray ionization mass spectrometry (ESI-MS) in negative ion mode was used to monitor the possible noncovalent adduct formations between DNA analogue oligonucleotides and two Fusarium mycotoxins, fumonisin B-1 and fusaproliferin. Using mild experimental ESI conditions specific noncovalent interactions were detected between both single- and double-stranded model oligonucleotides and fusaproliferin with 1:1 stoichiometry. Similar association complexes were observed for the deacetyl derivative of fusaproliferin. There were no peaks due to adduct formation present in the mass spectra of fumonisin B1, incubated with oligonucleotides in a wide concentration range, suggesting no specific interaction for this molecule. In a competitive complexation reaction, another mycotoxin, the beauvericin, forms more stable association complex with DNA than fusaproliferin. These findings can be of use in the understanding of molecular mechanisms of action during apoptosis and can be correlated with the teratogenic effect of fusaproliferin.
Interaction of Fusarium mycotoxins, fusaproliferin and fumonisin B-1, with DNA studied by electrospray ionization mass spectrometry
Pocsfalvi G;Malorni;
2000
Abstract
Electrospray ionization mass spectrometry (ESI-MS) in negative ion mode was used to monitor the possible noncovalent adduct formations between DNA analogue oligonucleotides and two Fusarium mycotoxins, fumonisin B-1 and fusaproliferin. Using mild experimental ESI conditions specific noncovalent interactions were detected between both single- and double-stranded model oligonucleotides and fusaproliferin with 1:1 stoichiometry. Similar association complexes were observed for the deacetyl derivative of fusaproliferin. There were no peaks due to adduct formation present in the mass spectra of fumonisin B1, incubated with oligonucleotides in a wide concentration range, suggesting no specific interaction for this molecule. In a competitive complexation reaction, another mycotoxin, the beauvericin, forms more stable association complex with DNA than fusaproliferin. These findings can be of use in the understanding of molecular mechanisms of action during apoptosis and can be correlated with the teratogenic effect of fusaproliferin.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.