We provide a general procedure for the description and evaluation of the current distribution in mesoscopic quantum wires. Our approach is based on the Keldysh-Green function formalism of nonequilibrium quantum statistical mechanics and exploits the real-space renormalization method within the tight-binding framework. We obtain a detailed spatial description of the microscopic currents between any couple of sites of the system, both in the presence and in the absence of time-reversal symmetry. As an application we present current profiles for a disordered quantum wire in the regime of universal conductance fluctuations, and we illustrate the random path of the current flow also in the presence of a magnetic field.

Keldysh-Green function formalism for current profiles in mesoscopic systems

FARCHIONI R;Grosso G;
2003

Abstract

We provide a general procedure for the description and evaluation of the current distribution in mesoscopic quantum wires. Our approach is based on the Keldysh-Green function formalism of nonequilibrium quantum statistical mechanics and exploits the real-space renormalization method within the tight-binding framework. We obtain a detailed spatial description of the microscopic currents between any couple of sites of the system, both in the presence and in the absence of time-reversal symmetry. As an application we present current profiles for a disordered quantum wire in the regime of universal conductance fluctuations, and we illustrate the random path of the current flow also in the presence of a magnetic field.
2003
Persistent currents
transport theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/215115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 104
social impact