Sweet chestnut (Castanea sativa Mill.) is a multipurpose species of great ecological and economic importance in southwest Bulgaria. Bulgarian chestnut forests are severely degraded, however, due to the intensive exploitation and bad management that have occurred over the last 2000 years. Given the urgent need to define conservation strategies to preserve the biodiversity of Bulgarian chestnut, we estimated its genetic variability. A set of eight microsatellite primers were used to analyze the genetic diversity and structure of six C. sativa populations distributed throughout the range of species in Bulgaria. Results showed a generally high level of genetic diversity but little divergence among populations. A significant, positive, within-population inbreeding coefficient (Fis) was observed in four populations. A STRUCTURE analysis revealed three genetic clusters. Using a landscape approach, significant genetic barriers among populations were found by integrating genetics with geographical distance. We hypothesize that one population is a relict from a glacial refugium; the structure of the remaining populations is probably the result of a combination of natural events and human impacts. For the purposes of conservation planning, we have identified populations that are particularly rich in diversity and private alleles that are good candidates for preservation.
Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations:implications for conservation
POLLEGIONI, PAOLA;CHIOCCHINI, FRANCESCA;MATTIONI, CLAUDIA;CHERUBINI, MARCELLO
2014
Abstract
Sweet chestnut (Castanea sativa Mill.) is a multipurpose species of great ecological and economic importance in southwest Bulgaria. Bulgarian chestnut forests are severely degraded, however, due to the intensive exploitation and bad management that have occurred over the last 2000 years. Given the urgent need to define conservation strategies to preserve the biodiversity of Bulgarian chestnut, we estimated its genetic variability. A set of eight microsatellite primers were used to analyze the genetic diversity and structure of six C. sativa populations distributed throughout the range of species in Bulgaria. Results showed a generally high level of genetic diversity but little divergence among populations. A significant, positive, within-population inbreeding coefficient (Fis) was observed in four populations. A STRUCTURE analysis revealed three genetic clusters. Using a landscape approach, significant genetic barriers among populations were found by integrating genetics with geographical distance. We hypothesize that one population is a relict from a glacial refugium; the structure of the remaining populations is probably the result of a combination of natural events and human impacts. For the purposes of conservation planning, we have identified populations that are particularly rich in diversity and private alleles that are good candidates for preservation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.