Selenium (Se), Se-cysteines and selenoproteins have received growing interest in the nutritional field as redox-balance modulating agents. The aim of this study was to establish the Se-concentrating and Se-metabolizing capabilities of the probiotic Lactobacillus reuteri Lb2 BM, for nutraceutical applications. A comparative proteomic approach was employed to study the bacteria grown in a control condition (MRS modified medium) and in a stimulated condition (4.38 mg/L of sodium selenite). The total protein extract was separated into two pI ranges: 4-7 and 6-11; the 25 identified proteins were divided into five functional classes: (i) Se metabolism; (ii) energy metabolism; (iii) stress/adhesion; (iv) cell shape and transport; (v) proteins involved in other functions. All the experimental results indicate that L. reuteri Lb2 BM is able to metabolize Se(IV), incorporating it into selenoproteins, through the action of a selenocysteine lyase, thus enhancing organic Se bioavailability. This involves endo-ergonic reactions balanced by an increase of substrate-level phosphorylation, chiefly through lactic fermentation. Nevertheless, when L. reuteri was grown on Se a certain degree of stress was observed, and this has to be taken into account for future applicative purposes. The proteomic approach has proven to be a powerful tool for the metabolic characterization of potential Seconcentrating probiotics.

Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications.

Lamberti C;
2011

Abstract

Selenium (Se), Se-cysteines and selenoproteins have received growing interest in the nutritional field as redox-balance modulating agents. The aim of this study was to establish the Se-concentrating and Se-metabolizing capabilities of the probiotic Lactobacillus reuteri Lb2 BM, for nutraceutical applications. A comparative proteomic approach was employed to study the bacteria grown in a control condition (MRS modified medium) and in a stimulated condition (4.38 mg/L of sodium selenite). The total protein extract was separated into two pI ranges: 4-7 and 6-11; the 25 identified proteins were divided into five functional classes: (i) Se metabolism; (ii) energy metabolism; (iii) stress/adhesion; (iv) cell shape and transport; (v) proteins involved in other functions. All the experimental results indicate that L. reuteri Lb2 BM is able to metabolize Se(IV), incorporating it into selenoproteins, through the action of a selenocysteine lyase, thus enhancing organic Se bioavailability. This involves endo-ergonic reactions balanced by an increase of substrate-level phosphorylation, chiefly through lactic fermentation. Nevertheless, when L. reuteri was grown on Se a certain degree of stress was observed, and this has to be taken into account for future applicative purposes. The proteomic approach has proven to be a powerful tool for the metabolic characterization of potential Seconcentrating probiotics.
2011
Istituto di Scienze delle Produzioni Alimentari - ISPA
2-DE; Antioxidants; Microbiology; Probiotic; Selenium; Selenocysteine lyase
File in questo prodotto:
File Dimensione Formato  
prod_266207-doc_110945.pdf

accesso aperto

Descrizione: Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications.
Tipologia: Versione Editoriale (PDF)
Dimensione 285.9 kB
Formato Adobe PDF
285.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/217485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact