Spin resolved edge states are ideal candidates for the implementation of dual-rail quantum computation architectures by encoding the qubit in the spin degree of freedom of the co-propagating edge states. An important element for the realization of such architectures is a coherent beam splitter that controllably mixes the two co-propagating spin-resolved edge channels. Coupling of the spin resolved edge states is demonstrated recently by spin-flip scattering event that is induced by in-plane spatially-dependent periodic magnetic field of the nano-magnet array placed at the boundary of the mesa. In this paper we discuss the nanofabrication and our preliminary transport analysis of an electronic interferometer device made of two nano-magnetic arrays placed in close proximity. The impact of temperature in the coherent properties of the devices is addressed.

Towards an Electronic Interferometer based on Spin-Resolved Quantum Hall Edge States

L Chirolli;F Taddei;V Giovannetti;R Fazio;G Biasiol;L Sorba;V Pellegrini;F Beltram
2013

Abstract

Spin resolved edge states are ideal candidates for the implementation of dual-rail quantum computation architectures by encoding the qubit in the spin degree of freedom of the co-propagating edge states. An important element for the realization of such architectures is a coherent beam splitter that controllably mixes the two co-propagating spin-resolved edge channels. Coupling of the spin resolved edge states is demonstrated recently by spin-flip scattering event that is induced by in-plane spatially-dependent periodic magnetic field of the nano-magnet array placed at the boundary of the mesa. In this paper we discuss the nanofabrication and our preliminary transport analysis of an electronic interferometer device made of two nano-magnetic arrays placed in close proximity. The impact of temperature in the coherent properties of the devices is addressed.
2013
Istituto Nanoscienze - NANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/220678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact