We demonstrate the fabrication of polymeric membranes that incorporate a few layers of periodically aligned magnetic microchains formed upon the application of variable magnetic fields. A homogeneous solution containing an elastomeric polymer and a small amount of colloidal magnetic nanoparticles is spin coated on glass slides, thereby forming thin magnetic membranes of ca. 10 um thickness. Subsequent application of a homogeneous magnetic field results in the orientation of the magnetic clusters and their further motion into the matrix along the field lines forming layers of aligned chains. The study of the kinetics of alignment demonstrates that the chains are formed in the first hour of exposure to the magnetic field. Above all, a detailed microscopy study reveals that the dimensions and the periodicity of the microchains are effectively controlled by the intensity of the magnetic field, in good agreement with the theoretical simulations. This ability to form and manipulate the size and the distribution of chains into the polymeric matrix gives the opportunity to develop multifunctional composite materials ready to be used in various applications such as electromagnetic shielding, or multifunctional magnetic membranes etc.

Formation and magnetic manipulation of periodically aligned microchains in thin plastic membranes

Bertoni G;Cozzoli P D;
2012

Abstract

We demonstrate the fabrication of polymeric membranes that incorporate a few layers of periodically aligned magnetic microchains formed upon the application of variable magnetic fields. A homogeneous solution containing an elastomeric polymer and a small amount of colloidal magnetic nanoparticles is spin coated on glass slides, thereby forming thin magnetic membranes of ca. 10 um thickness. Subsequent application of a homogeneous magnetic field results in the orientation of the magnetic clusters and their further motion into the matrix along the field lines forming layers of aligned chains. The study of the kinetics of alignment demonstrates that the chains are formed in the first hour of exposure to the magnetic field. Above all, a detailed microscopy study reveals that the dimensions and the periodicity of the microchains are effectively controlled by the intensity of the magnetic field, in good agreement with the theoretical simulations. This ability to form and manipulate the size and the distribution of chains into the polymeric matrix gives the opportunity to develop multifunctional composite materials ready to be used in various applications such as electromagnetic shielding, or multifunctional magnetic membranes etc.
2012
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto Nanoscienze - NANO
ANISOTROPIC REINFORCEMENT
ORDERED STRUCTURES
FLUID FILMS
FIELD
NANOPARTICLES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/222061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact