Zinc oxide (ZnO) is one of the most promising materials for realizing three-dimensional (3D) nanostructured transparent conducting oxides (TCOs) on large scale, because it is cheap, it can be modified with large concentrations of trivalent elements (such Al, Ga or In) and it is characterized by good electron mobility, wide bandgap and visible-range transparency. But, above all, it can be easily obtained in the form of different nanostructures with a large number of growth techniques. A solution-free and catalyst-free approach has been explored here by the vapor phase synthesis of vertically aligned ZnO nanorods on ZnO:Al (AZO) films grown by pulsed electron deposition (PED). The obtained nanostructured TCOs resulted to be homogeneous on large areas and easily patternable by means of mechanical masks. The morphology, crystalline structure, electrical and optical properties of the obtained samples have been characterized in depth. The possible use of such a nanostructured TCO in excitonic (e.g. DSSC) or low-reflectivity traditional solar cells is discussed.

Solution-free and catalyst-free synthesis of ZnO-based nanostructured TCOs by PED and vapor phase growth techniques

Calestani Davide;Pattini Francesco;Bissoli Francesco;Gilioli Edmondo;Villani Marco;Zappettini Andrea
2012

Abstract

Zinc oxide (ZnO) is one of the most promising materials for realizing three-dimensional (3D) nanostructured transparent conducting oxides (TCOs) on large scale, because it is cheap, it can be modified with large concentrations of trivalent elements (such Al, Ga or In) and it is characterized by good electron mobility, wide bandgap and visible-range transparency. But, above all, it can be easily obtained in the form of different nanostructures with a large number of growth techniques. A solution-free and catalyst-free approach has been explored here by the vapor phase synthesis of vertically aligned ZnO nanorods on ZnO:Al (AZO) films grown by pulsed electron deposition (PED). The obtained nanostructured TCOs resulted to be homogeneous on large areas and easily patternable by means of mechanical masks. The morphology, crystalline structure, electrical and optical properties of the obtained samples have been characterized in depth. The possible use of such a nanostructured TCO in excitonic (e.g. DSSC) or low-reflectivity traditional solar cells is discussed.
2012
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
PULSED ELECTRON DEPOSITION
SENSITIZED SOLAR-CELLS
ZINC-OXIDE
NANOSTRUCTURED TCO
NANOWIRES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/222085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact