This paper deals with the reversible intraframe compression of grayscale images. With reference to a spatial DPCM scheme, prediction may be accomplished in a space varying fashion following two main strategies: adaptive, i.e., with predictors recalculated at each pixel position, and classified, in which image blocks, or pixels are preliminarily labeled into a number of statistical classes, for which minimum MSE (MMSE) predictors are calculated. In this paper, a trade off between the above two strategies is proposed, which relies on a classified linear-regression prediction obtained through fuzzy techniques, and is followed by context based statistical modeling of the outcome prediction errors, to enhance entropy coding. A thorough performances comparison with the most advanced methods in the literature highlights the advantages of the fuzzy approach.
Lossless image compression by adaptive contextual encoding
Bruno Aiazzi;Luciano Alparone;Stefano Baronti
2000
Abstract
This paper deals with the reversible intraframe compression of grayscale images. With reference to a spatial DPCM scheme, prediction may be accomplished in a space varying fashion following two main strategies: adaptive, i.e., with predictors recalculated at each pixel position, and classified, in which image blocks, or pixels are preliminarily labeled into a number of statistical classes, for which minimum MSE (MMSE) predictors are calculated. In this paper, a trade off between the above two strategies is proposed, which relies on a classified linear-regression prediction obtained through fuzzy techniques, and is followed by context based statistical modeling of the outcome prediction errors, to enhance entropy coding. A thorough performances comparison with the most advanced methods in the literature highlights the advantages of the fuzzy approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.