The spectroscopy of the constituents of the Earth's atmosphere that are active in the far infrared spectral region, among which the water vapour is the main one, has been validated through the analysis of wide-band nadir-looking spectra acquired with the Radiation Explorer in the Far Infrared-Prototype for Applications and Development (REFIR-PAD) Fourier transform spectroradiometer. The spectra, covering from 100 to 1400 cm(-1) with a 0.475 cm(-1) unapodized resolution, were acquired during a balloon flight performed in a tropical region in 2005. Atmospheric variables, namely water vapour and temperature vertical profiles, were retrieved from the REFIR-PAD data, and the residuals of the fitting are here critically analysed for the search of systematic effects that can be ascribed to spectroscopic errors. In the spectral interval between 150 and 600 cm(-1) nosignificant inconsistency is detected between the residuals and the measurement uncertainty, proving the good quality of the radiative transfer model and of the HITRAN 2004 spectroscopic database. Significant difference are instead observed when the HITRAN 2000 database is used. (C) 2007 Elsevier Ltd. All rights reserved.
Test of far infrared atmospheric spectroscopy using wide-band balloon borne measurements of the upwelling radiance
Bianchini G;SDel Bianco;
2008
Abstract
The spectroscopy of the constituents of the Earth's atmosphere that are active in the far infrared spectral region, among which the water vapour is the main one, has been validated through the analysis of wide-band nadir-looking spectra acquired with the Radiation Explorer in the Far Infrared-Prototype for Applications and Development (REFIR-PAD) Fourier transform spectroradiometer. The spectra, covering from 100 to 1400 cm(-1) with a 0.475 cm(-1) unapodized resolution, were acquired during a balloon flight performed in a tropical region in 2005. Atmospheric variables, namely water vapour and temperature vertical profiles, were retrieved from the REFIR-PAD data, and the residuals of the fitting are here critically analysed for the search of systematic effects that can be ascribed to spectroscopic errors. In the spectral interval between 150 and 600 cm(-1) nosignificant inconsistency is detected between the residuals and the measurement uncertainty, proving the good quality of the radiative transfer model and of the HITRAN 2004 spectroscopic database. Significant difference are instead observed when the HITRAN 2000 database is used. (C) 2007 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.