Intramuscular electromyographic activity of the thyroarytenoid (TA) muscle, a vocal cord adductor, was recorded in nine normal adult humans during progressive isocapnic hypoxia and hyperoxic hypercapnia. Four of the nine subjects also performed voluntary isocapnic hyperventilation. During quiet breathing of room air, the TA exhibited phasic activity in expiration and often tonic activity throughout the respiratory cycle. Both phasic and tonic TA activity progressively decreased with either increasing hypoxia or hypercapnia. Tonic activity appeared to decrease more rapidly than phasic activity with increasing chemical stimulation. At comparable tidal volume increments, the relative decrease in phasic TA activity appeared to be greater under hypoxic than under hypercapnic conditions. During voluntary isocapnic hyperventilation, phasic TA activity decreased without significant change in tonic activity. At tidal volumes approximately double those of base line, the relative decrease in TA activity was similar during both hypercapnia and voluntary hyperventilation, although differences appeared at higher tidal volumes. The results, in combination with recent findings in humans regarding the posterior cricoarytenoid muscle, a vocal cord abductor, suggest that vocal cord position is dependent on the net balance of counteracting forces not only during quiet breathing but also during involuntary and voluntary hyperpnea

Thyroarytenoid muscle activity during hypoxia, hypercapnia, and voluntary hyperventilation in humans

Insalaco G;Cibella F;
1990

Abstract

Intramuscular electromyographic activity of the thyroarytenoid (TA) muscle, a vocal cord adductor, was recorded in nine normal adult humans during progressive isocapnic hypoxia and hyperoxic hypercapnia. Four of the nine subjects also performed voluntary isocapnic hyperventilation. During quiet breathing of room air, the TA exhibited phasic activity in expiration and often tonic activity throughout the respiratory cycle. Both phasic and tonic TA activity progressively decreased with either increasing hypoxia or hypercapnia. Tonic activity appeared to decrease more rapidly than phasic activity with increasing chemical stimulation. At comparable tidal volume increments, the relative decrease in phasic TA activity appeared to be greater under hypoxic than under hypercapnic conditions. During voluntary isocapnic hyperventilation, phasic TA activity decreased without significant change in tonic activity. At tidal volumes approximately double those of base line, the relative decrease in TA activity was similar during both hypercapnia and voluntary hyperventilation, although differences appeared at higher tidal volumes. The results, in combination with recent findings in humans regarding the posterior cricoarytenoid muscle, a vocal cord abductor, suggest that vocal cord position is dependent on the net balance of counteracting forces not only during quiet breathing but also during involuntary and voluntary hyperpnea
1990
Istituto di biomedicina e di immunologia molecolare - IBIM - Sede Palermo
File in questo prodotto:
File Dimensione Formato  
prod_196425-doc_42730.pdf

non disponibili

Descrizione: Articolo pubblicato
Dimensione 5.04 MB
Formato Adobe PDF
5.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/226709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact