The complex differentiation process of the CD4+ T helper lymphocytes shapes the form and the range of the immune response to different antigenic challenges. Few mathematical and computational models have addressed this key phenomenon. We here present a multiscale approach in which two different levels of description, i.e. a gene regulatory network model and an agent-based simulator for cell population dynamics, are integrated into a single immune system model. We illustrate how such model integration allows bridging a gap between gene level information and cell level population, and how the model is able to describe a coherent immunological behaviour when challenged with different stimuli.
Multi-scale Simulation of T Helper Lymphocyte Differentiation
Tieri P;Prana V;Colombo T;Daniele Santoni;Castiglione F
2014
Abstract
The complex differentiation process of the CD4+ T helper lymphocytes shapes the form and the range of the immune response to different antigenic challenges. Few mathematical and computational models have addressed this key phenomenon. We here present a multiscale approach in which two different levels of description, i.e. a gene regulatory network model and an agent-based simulator for cell population dynamics, are integrated into a single immune system model. We illustrate how such model integration allows bridging a gap between gene level information and cell level population, and how the model is able to describe a coherent immunological behaviour when challenged with different stimuli.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


