In this paper, the effects of quantization noise feedback on the entropy of Laplacian pyramids are investigated. This technique makes it possible for the maximum absolute reconstruction error to be easily and strongly upper-bounded (near-lossless coding), and therefore, allows reversible compression. The entropy-minimizing optimum quantizer is obtained by modeling the first-order distributions of the differential signals as Laplacian densities, and by deriving a model for the equivalent memoryless entropy. A novel approach, based on an enhanced Laplacian pyramid, is proposed for the compression, either lossless or lossy, of gray-scale images. Major details are prioritized through a content-driven decision rule embedded in a uniform threshold quantizer with noise feedback. Lossless coding shows improvements over reversible Joint Photographers Expert Group (JPEG) and the reduced-difference pyramid schemes, while lossy coding outperforms JPEG, with a significant peak signal-to-noise ratio (PSNR) gain. Also, subjective quality is higher even at very low bit rates, due to the absence of the annoying impairments typical of JPEG. Moreover, image versions having resolution and SNR that are both progressively increasing are made available at the receiving end from the earliest retrieval stage on, as intermediate steps of the decoding procedure, without any additional cost.

Lossless Image Compression by Quantization Feedback in a Content-Driven Enhanced Laplacian Pyramid

Bruno Aiazzi;Luciano Alparone;Stefano Baronti;Franco Lotti
1997

Abstract

In this paper, the effects of quantization noise feedback on the entropy of Laplacian pyramids are investigated. This technique makes it possible for the maximum absolute reconstruction error to be easily and strongly upper-bounded (near-lossless coding), and therefore, allows reversible compression. The entropy-minimizing optimum quantizer is obtained by modeling the first-order distributions of the differential signals as Laplacian densities, and by deriving a model for the equivalent memoryless entropy. A novel approach, based on an enhanced Laplacian pyramid, is proposed for the compression, either lossless or lossy, of gray-scale images. Major details are prioritized through a content-driven decision rule embedded in a uniform threshold quantizer with noise feedback. Lossless coding shows improvements over reversible Joint Photographers Expert Group (JPEG) and the reduced-difference pyramid schemes, while lossy coding outperforms JPEG, with a significant peak signal-to-noise ratio (PSNR) gain. Also, subjective quality is higher even at very low bit rates, due to the absence of the annoying impairments typical of JPEG. Moreover, image versions having resolution and SNR that are both progressively increasing are made available at the receiving end from the earliest retrieval stage on, as intermediate steps of the decoding procedure, without any additional cost.
1997
Istituto di Fisica Applicata - IFAC
Lossless image compression
enhanced Laplacian pyramid
hierarchical content-driven decision rule
quantization error feedback
entropy-minimizing optimum quantizer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/227521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? ND
social impact