ZnAl based hydrotalcite nanoparticles (ZnAl-HTlc NPs) were covalently modified by an organic oligothiophene fluorescent compound (T4Si) by using direct microwave (MW)-assisted silylation. Morphological and optical characterization proved that the MW-assisted method enables efficient grafting of the target fluorescent dye on the nanoparticles (NPs) surface in a few minutes with a predefined loading ratio only depending by the MW irradiation time. Moreover, the presented approach preserved the HTlc interlayer region, allowing further functionalization. Filmability, fluorescent properties, and biocompatibility of the silylated compound was also demonstrated highlighting the potential of the so-obtained lamellar NPs in applications broadening from diagnostic biomedical tools to photonics and sensing.
Selective MW-assisted surface chemical tailoring of hydrotalcites for fluorescent and biocompatible nanocomposites
Posati Tamara;Melucci Manuela;Benfenati Valentina;Durso Margherita;Toffanin Stefano;Sagnella Anna;Pistone Assunta;Muccini Michele;Ruani Giampiero;Zamboni Roberto
2014
Abstract
ZnAl based hydrotalcite nanoparticles (ZnAl-HTlc NPs) were covalently modified by an organic oligothiophene fluorescent compound (T4Si) by using direct microwave (MW)-assisted silylation. Morphological and optical characterization proved that the MW-assisted method enables efficient grafting of the target fluorescent dye on the nanoparticles (NPs) surface in a few minutes with a predefined loading ratio only depending by the MW irradiation time. Moreover, the presented approach preserved the HTlc interlayer region, allowing further functionalization. Filmability, fluorescent properties, and biocompatibility of the silylated compound was also demonstrated highlighting the potential of the so-obtained lamellar NPs in applications broadening from diagnostic biomedical tools to photonics and sensing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.