A white emitting copolymer with the polyphenylenevinylene (PPV) structure is obtained via the Stille cross-coupling reaction. Substitution of hydrogen atoms with fluorine atoms on the vinylene units of poly(1,4-dialkoxyphenylenevinylene) shifts the emission from orange-red to blue. White emission is obtained by combining dialkoxyphenylenedifluorovinylene and dialkoxyphenylenevinylene units in proper ratio. The two complementary emitters are obtained separately by Stille polymerization reaction. Then, the two reaction mixtures are combined without purification in different ratios and further reacted in similar experimental conditions. A white luminescent material is obtained using 99/1 mixing ratio. OLED devices fabricated with this copolymer shows near-white emission with CIE (0.30, 0.40) and excellent stability in the range 10e200 cd/m2.
A white emitting poly(phenylenevinylene)
Martinelli C;Giovanella U;Cardone A;Destri S;
2014
Abstract
A white emitting copolymer with the polyphenylenevinylene (PPV) structure is obtained via the Stille cross-coupling reaction. Substitution of hydrogen atoms with fluorine atoms on the vinylene units of poly(1,4-dialkoxyphenylenevinylene) shifts the emission from orange-red to blue. White emission is obtained by combining dialkoxyphenylenedifluorovinylene and dialkoxyphenylenevinylene units in proper ratio. The two complementary emitters are obtained separately by Stille polymerization reaction. Then, the two reaction mixtures are combined without purification in different ratios and further reacted in similar experimental conditions. A white luminescent material is obtained using 99/1 mixing ratio. OLED devices fabricated with this copolymer shows near-white emission with CIE (0.30, 0.40) and excellent stability in the range 10e200 cd/m2.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.