A single natural cotton fiber has been functionalized with poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) conductive polymer by a simple soaking process and used as a channel of an organic electrochemical transistor (OECT), directly interfaced with a liquid electrolyte in contact with an Ag wire gate. The device shows a stable and reproducible current modulation and has been demonstrated to be very effective for electrochemical sensing of NaCl concentration in water. The single wire cotton fiber OECT results to be a simple and low cost device, which is very attractive for wearable electronics in fitness and healthcare.
A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing
Tarabella G;Villani M;Calestani D;Mosca R;Iannotta S;Zappettini A;Coppedè N
2012
Abstract
A single natural cotton fiber has been functionalized with poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) conductive polymer by a simple soaking process and used as a channel of an organic electrochemical transistor (OECT), directly interfaced with a liquid electrolyte in contact with an Ag wire gate. The device shows a stable and reproducible current modulation and has been demonstrated to be very effective for electrochemical sensing of NaCl concentration in water. The single wire cotton fiber OECT results to be a simple and low cost device, which is very attractive for wearable electronics in fitness and healthcare.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.