Entropy-driven polymer dynamics at the nanoscale is fundamentally important in biological systems but the dependence of the entropic force on the nanoconfinement remains elusive. Here, we established an entropy-driven single molecule tug-of-war (TOW) at two micro-nanofluidic interfaces bridged by a nanoslit, performed the force analysis from a modified wormlike chain in the TOW scenario and the entropic recoiling process, and determined the associated scalings on the nanoconfinement. Our results provide a direct experimental evidence that the entropic forces in these two regimes, though unequal, are essentially constant at defined slit heights, irrespective of the slit lengths and the DNA segments within. Our findings have the implications to polymer transport at the nanoscale, device design for single molecule analysis, and biotechnological applications.

Entropy-Driven Single Molecule Tug-of-War of DNA at Micro-Nanofluidic Interfaces

Taloni A.;
2012

Abstract

Entropy-driven polymer dynamics at the nanoscale is fundamentally important in biological systems but the dependence of the entropic force on the nanoconfinement remains elusive. Here, we established an entropy-driven single molecule tug-of-war (TOW) at two micro-nanofluidic interfaces bridged by a nanoslit, performed the force analysis from a modified wormlike chain in the TOW scenario and the entropic recoiling process, and determined the associated scalings on the nanoconfinement. Our results provide a direct experimental evidence that the entropic forces in these two regimes, though unequal, are essentially constant at defined slit heights, irrespective of the slit lengths and the DNA segments within. Our findings have the implications to polymer transport at the nanoscale, device design for single molecule analysis, and biotechnological applications.
2012
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Entropic force
Nanofluidics
Polymer dynamics
Single molecule
Tug-of-war
File in questo prodotto:
File Dimensione Formato  
prod_193395-doc_101393.pdf

solo utenti autorizzati

Descrizione: Entropy-driven single molecule tug-of-war of DNA at micro-nanofluidic interfaces
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/231850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 59
social impact