n this work, near-lossless compression yielding strictly bounded reconstruction error, is proposed for high-quality compression of remote sensing images. A space-varying linear-regression prediction is obtained through fuzzy-logic techniques as a problem of matching pursuit, in which a predictor different for every pixel is obtained as an expansion in series of a finite number of prototype nonorthogonal predictors, that are calculated in a fuzzy fashion as well. To enhance entropy coding, the spatial prediction is followed by context-based statistical modeling of prediction errors. Performance comparisons with JPEG 2000 and previous works by the authors, highlight the advantages of the proposed fuzzy approach to data compression.
Near-lossless compression of multi/hyperspectral image data through a fuzzy matching-pursuit interband prediction
Bruno Aiazzi;Luciano Alparone;Stefano Baronti;Leonardo Santurri
2002
Abstract
n this work, near-lossless compression yielding strictly bounded reconstruction error, is proposed for high-quality compression of remote sensing images. A space-varying linear-regression prediction is obtained through fuzzy-logic techniques as a problem of matching pursuit, in which a predictor different for every pixel is obtained as an expansion in series of a finite number of prototype nonorthogonal predictors, that are calculated in a fuzzy fashion as well. To enhance entropy coding, the spatial prediction is followed by context-based statistical modeling of prediction errors. Performance comparisons with JPEG 2000 and previous works by the authors, highlight the advantages of the proposed fuzzy approach to data compression.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


