The paper describes the automatic extraction of domain knowledge from Italian document collections and presents a fully-implemented ontology learning system (T2K, Text-2-Knowledge) that includes a battery of tools for Natural Language Processing, statistical text analysis and machine learning. Evaluated results show the considerable potential of systems like T2K, exploiting an incremental interleaving of NLP and machine learning techniques for accurate large-scale semi-automatic extraction and structuring of domain-specific knowledge.

Text-2-Knowledge:una piattaforma linguistico-computazionale per l'estrazione di conoscenza da testi

Dell'Orletta F;Marchi S;Montemagni S;Pirrelli V
2009

Abstract

The paper describes the automatic extraction of domain knowledge from Italian document collections and presents a fully-implemented ontology learning system (T2K, Text-2-Knowledge) that includes a battery of tools for Natural Language Processing, statistical text analysis and machine learning. Evaluated results show the considerable potential of systems like T2K, exploiting an incremental interleaving of NLP and machine learning techniques for accurate large-scale semi-automatic extraction and structuring of domain-specific knowledge.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Dell'Orletta F it
dc.authority.people Lenci A it
dc.authority.people Marchi S it
dc.authority.people Montemagni S it
dc.authority.people Pirrelli V it
dc.collection.id.s 8c50ea44-be95-498f-946e-7bb5bd666b7c *
dc.collection.name 02.01 Contributo in volume (Capitolo o Saggio) *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/15 17:41:23 -
dc.date.available 2024/02/15 17:41:23 -
dc.date.issued 2009 -
dc.description.abstracteng The paper describes the automatic extraction of domain knowledge from Italian document collections and presents a fully-implemented ontology learning system (T2K, Text-2-Knowledge) that includes a battery of tools for Natural Language Processing, statistical text analysis and machine learning. Evaluated results show the considerable potential of systems like T2K, exploiting an incremental interleaving of NLP and machine learning techniques for accurate large-scale semi-automatic extraction and structuring of domain-specific knowledge. -
dc.description.affiliations CNR, ILC; Università di Pisa -
dc.description.allpeople Dell'Orletta F.; Lenci A.; Marchi S.; Montemagni S.; Pirrelli V. -
dc.description.allpeopleoriginal Dell'Orletta F., Lenci A., Marchi S., Montemagni S., Pirrelli V. -
dc.description.fulltext none en
dc.description.note Linguistica e modelli tecnologici della ricerca. Atti del XL Congresso SLI - Vercelli, settembre 2006 A cura di Giacomo Ferrari, Ruben Benatti, Monica Mosca -
dc.description.numberofauthors 4 -
dc.identifier.isbn 978-88-7870-469-5 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/233257 -
dc.language.iso ita -
dc.miur.last.status.update 2024-10-10T13:48:55Z *
dc.publisher.country ITA -
dc.publisher.name Bulzoni -
dc.publisher.place Roma -
dc.relation.alleditors Giacomo Ferrari, Ruben Benatti, Monica Mosca -
dc.relation.firstpage 285 -
dc.relation.lastpage 300 -
dc.relation.numberofpages 16 -
dc.subject.keywords Term extraction -
dc.subject.keywords Ontology Learning -
dc.subject.singlekeyword Term extraction *
dc.subject.singlekeyword Ontology Learning *
dc.title Text-2-Knowledge:una piattaforma linguistico-computazionale per l'estrazione di conoscenza da testi en
dc.type.driver info:eu-repo/semantics/bookPart -
dc.type.full 02 Contributo in Volume::02.01 Contributo in volume (Capitolo o Saggio) it
dc.type.miur 268 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 184585 -
iris.orcid.lastModifiedDate 2024/03/01 16:02:47 *
iris.orcid.lastModifiedMillisecond 1709305367199 *
iris.sitodocente.maxattempts 10 -
Appare nelle tipologie: 02.01 Contributo in volume (Capitolo o Saggio)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/233257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact