Landslide Periods (LPs) are defined as periods, shorter than a hydrological year, during which one or more landslide damage events occur in one or more sectors of a study area. In this work, we present a methodological approach, based on the comparative analysis of historical series of landslide damage and daily rainfall data, aiming to characterise the main types of LPs affecting selected areas. Cumulative rainfall preceding landslide activation is assessed for short (1, 2, 3, and 5 days), medium (7, 10, and 30 days) and long (60, 90, and 180 days) durations, and their Return Periods (RPs) are assessed and ranked into three classes (Class 1: RP=5-10 years; Class 2: RP=11-15; Class 3: RP>15 years). To assess landslide damage, the Simplified Damage Index (SDI) is introduced. This represents classified landslide losses and is obtained by multiplying the value of the damaged element and the percentage of damage affecting it. The comparison of the RP of rainfall and the SDI allows us to indentify the different types of LPs that affected the study area in the past and that could affect it again in the future. The results of this activity can be used for practical purposes to define scenarios and strategies for risk management, to suggest priorities in policy towards disaster mitigation and preparedness and to predispose defensive measures and civil protection plans ranked according to the types of LPs that must be managed. We present an application, performed for a 39-year series of rainfall/landslide damage data and concerning a study area located in NE Calabria (Italy); in this case study, we identify four main types of LPs, which are ranked according to damage severity.

A METHODOLOGICAL APPROACH TO CHARACTERISE LANDSLIDE PERIODS BASED ON HISTORICAL SERIES OF RAINFALL AND LANDSLIDE DAMAGE

O PETRUCCI;AA PASQUA
2009

Abstract

Landslide Periods (LPs) are defined as periods, shorter than a hydrological year, during which one or more landslide damage events occur in one or more sectors of a study area. In this work, we present a methodological approach, based on the comparative analysis of historical series of landslide damage and daily rainfall data, aiming to characterise the main types of LPs affecting selected areas. Cumulative rainfall preceding landslide activation is assessed for short (1, 2, 3, and 5 days), medium (7, 10, and 30 days) and long (60, 90, and 180 days) durations, and their Return Periods (RPs) are assessed and ranked into three classes (Class 1: RP=5-10 years; Class 2: RP=11-15; Class 3: RP>15 years). To assess landslide damage, the Simplified Damage Index (SDI) is introduced. This represents classified landslide losses and is obtained by multiplying the value of the damaged element and the percentage of damage affecting it. The comparison of the RP of rainfall and the SDI allows us to indentify the different types of LPs that affected the study area in the past and that could affect it again in the future. The results of this activity can be used for practical purposes to define scenarios and strategies for risk management, to suggest priorities in policy towards disaster mitigation and preparedness and to predispose defensive measures and civil protection plans ranked according to the types of LPs that must be managed. We present an application, performed for a 39-year series of rainfall/landslide damage data and concerning a study area located in NE Calabria (Italy); in this case study, we identify four main types of LPs, which are ranked according to damage severity.
2009
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
landslide
damage
File in questo prodotto:
File Dimensione Formato  
prod_184699-doc_31366.pdf

accesso aperto

Descrizione: ARTICOLO PUBBLICATO
Tipologia: Versione Editoriale (PDF)
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/233906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact