Maintenance of genetic stability is of crucial importance for any form of life. Before cell division in each mammalian cell, the process of DNA replication must faithfully duplicate three billion bases with an absolute minimum of mistakes. This is complicated by the fact that DNA itself is highly reactive and is constantly attacked by endogenous and exogenous factors leading to 50,000-100,000 different damages in the DNA of human cells every day. In this mini-review we will focus on lesion bypass by DNA polymerase machines either in replication or repair, with particular focus on the repair of oxidative lesions.

DNA replication and repair bypass machines.

Maga G
2011

Abstract

Maintenance of genetic stability is of crucial importance for any form of life. Before cell division in each mammalian cell, the process of DNA replication must faithfully duplicate three billion bases with an absolute minimum of mistakes. This is complicated by the fact that DNA itself is highly reactive and is constantly attacked by endogenous and exogenous factors leading to 50,000-100,000 different damages in the DNA of human cells every day. In this mini-review we will focus on lesion bypass by DNA polymerase machines either in replication or repair, with particular focus on the repair of oxidative lesions.
2011
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
DNA replication
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/23391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact