This paper describes an innovative approach for a new generation of large aperture, deployable telescopes for advanced space LIDAR applications, using the thin active mirror technology. The overall telescope design is presented with a special attention to the optical performances analysis. The mechanical layout with details of the deployment and baffling technique is shown; the complete satellite thermo-elastic analysis mapping the primary mirror deformation due to the thermal loads is presented; the control system architecture is explained and the optical design including the angular and spatial resolution, effective optical aperture and radiometric transmission, optical alignment tolerances, straylight and baffling is deeply discussed. Finally an overview of different mission profiles that this technology can satisfy is presented; the imaging performances can be achieved using the shown technology tuning the surface control to higher performances.

Deployable, lightweight and large aperture spaceborne telescope for LIDAR based earth observations

Mazzinghi P;Bratina V;Gambicorti L;Zuccaro Marchi A;
2007

Abstract

This paper describes an innovative approach for a new generation of large aperture, deployable telescopes for advanced space LIDAR applications, using the thin active mirror technology. The overall telescope design is presented with a special attention to the optical performances analysis. The mechanical layout with details of the deployment and baffling technique is shown; the complete satellite thermo-elastic analysis mapping the primary mirror deformation due to the thermal loads is presented; the control system architecture is explained and the optical design including the angular and spatial resolution, effective optical aperture and radiometric transmission, optical alignment tolerances, straylight and baffling is deeply discussed. Finally an overview of different mission profiles that this technology can satisfy is presented; the imaging performances can be achieved using the shown technology tuning the surface control to higher performances.
2007
Istituto Nazionale di Ottica - INO
large aperture telescopes
deployable thin primary
active control system
advanced LIDAR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/24025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact