This paper describes the design, manufacturing and test of a ground demonstrator of an innovative technology able to realize lightweight active controlled space-borne telescope mirror. This analysis is particularly devoted to applications for a large aperture space telescope for advanced LIDAR, but it can be used for any lightweight mirror. For a spaceborne telescope the mirror weight is a fundamental parameter to be minimized (less than 15 Kg/m2), while maximizing the optical performances (optical quality better than ë/3). In order to guarantee these results, the best selected solution is a thin glass primary mirror coupled to a stiff CFRP (Carbon Fiber Reinforced Plastic) panel with a surface active control system. A preliminary design of this lightweight structure highlighted the critical areas that were deeply analyzed by the ground demonstrator: the 1 mm thick mirror survivability on launch and the actuator functional performances with low power consumption. To preserve the mirror glass the Electrostatic Locking technique was developed and is here described. The active optics technique, already widely used for ground based telescopes, consists of a metrology system (wave front sensor, WFS), a control algorithm and a system of actuators to slightly deform the primary mirror and/or displace the secondary, in a closed-loop control system that applies the computed corrections to the mirror’s optical errors via actuators. These actuators types are properly designed and tested in order to guarantee satisfactory performances in terms of stroke, force and power consumption. The realized and tested ground demonstrator is a square CFRP structure with a flat mirror on the upper face and an active actuator beneath it. The test campaign demonstrated the technology feasibility and robustness, supporting the next step toward the large and flat surface with several actuators.

Lightweight active controlled primary mirror technology demonstrator

Mazzinghi P;Bratina V;Gambicorti L;Zuccaro Marchi A;
2007

Abstract

This paper describes the design, manufacturing and test of a ground demonstrator of an innovative technology able to realize lightweight active controlled space-borne telescope mirror. This analysis is particularly devoted to applications for a large aperture space telescope for advanced LIDAR, but it can be used for any lightweight mirror. For a spaceborne telescope the mirror weight is a fundamental parameter to be minimized (less than 15 Kg/m2), while maximizing the optical performances (optical quality better than ë/3). In order to guarantee these results, the best selected solution is a thin glass primary mirror coupled to a stiff CFRP (Carbon Fiber Reinforced Plastic) panel with a surface active control system. A preliminary design of this lightweight structure highlighted the critical areas that were deeply analyzed by the ground demonstrator: the 1 mm thick mirror survivability on launch and the actuator functional performances with low power consumption. To preserve the mirror glass the Electrostatic Locking technique was developed and is here described. The active optics technique, already widely used for ground based telescopes, consists of a metrology system (wave front sensor, WFS), a control algorithm and a system of actuators to slightly deform the primary mirror and/or displace the secondary, in a closed-loop control system that applies the computed corrections to the mirror’s optical errors via actuators. These actuators types are properly designed and tested in order to guarantee satisfactory performances in terms of stroke, force and power consumption. The realized and tested ground demonstrator is a square CFRP structure with a flat mirror on the upper face and an active actuator beneath it. The test campaign demonstrated the technology feasibility and robustness, supporting the next step toward the large and flat surface with several actuators.
2007
Istituto Nazionale di Ottica - INO
978-0-8194-6908-3
space telescope
active optics
wavefront sensor
LIDAR
lightweight optics
mirrors
actuators
telescopes
control systems
glasses
lightweight mirrors
manufacturing
metrology
fiber reinforced polymers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/24028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact