A new instrument named SAFIRE-A (Spectroscopy of the Atmosphere using Far-Infrared Emission/Airborne), which can operate on high-altitude platforms, has been developed for the study of the atmospheric composition through limb-scanning emission measurements. The instrument is a polarizing Fourier transform spectrometer that operates in the far infrared with a resolution of 0.004 cm-1. SAFIRE-A uses efficient photon noise limited detectors and a novel optical configuration, which provide a cold pupil and field stop as well as cold narrow bandpass filters to enhance its sensitivity. The instrument was successfully operated on an M-55 stratospheric research aircraft in the polar regions during the winter 1996-97 Airborne Polar Experiment. The instrument design, aircraft integration, and performances attained in the field campaign are described and discussed. The atmospheric emission spectrum is measured with an rms noise accuracy of 0.5 K (measured in brightness temperature) in each spectral element near 20 cm-1 with a 30 s measurement time.
SAFIRE-A - Spectroscopy of the Atmosphere using Far-InfraRed mission /Airborne
Bruno Carli;Ugo Cortesi;Francesco Mencaraglia;Marco Ridolfi
1999
Abstract
A new instrument named SAFIRE-A (Spectroscopy of the Atmosphere using Far-Infrared Emission/Airborne), which can operate on high-altitude platforms, has been developed for the study of the atmospheric composition through limb-scanning emission measurements. The instrument is a polarizing Fourier transform spectrometer that operates in the far infrared with a resolution of 0.004 cm-1. SAFIRE-A uses efficient photon noise limited detectors and a novel optical configuration, which provide a cold pupil and field stop as well as cold narrow bandpass filters to enhance its sensitivity. The instrument was successfully operated on an M-55 stratospheric research aircraft in the polar regions during the winter 1996-97 Airborne Polar Experiment. The instrument design, aircraft integration, and performances attained in the field campaign are described and discussed. The atmospheric emission spectrum is measured with an rms noise accuracy of 0.5 K (measured in brightness temperature) in each spectral element near 20 cm-1 with a 30 s measurement time.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.