Preliminary tests are here reported, carried out on a compact and rugged diode pumped solid state (DPSS) laser for industrial applications. The laser design is based on a Neodimium doped slab shaped ceramic YAG medium. A maximum extraction of more than 320 W at a 44% slope efficiency level has been obtained with a simple half symmetric stable resonator scheme. Experimental data together with F.E.M. simulations indicate that power extraction can be scaled up to a multi-kilo Watt level with this extremely compact (overall dimensions: 160 x 100 x 60 mm) laser head geometry. A narrow transverse direction Beam Parameter Product (BPP) of the order of 3 mm.mrad is experimentally obtained. This enables the reasonable prediction of a good quality beam extraction adopting a stable multipass resonator or a hybrid stable-unstable resonator. Given the zig-zag resonator path, thermal lens effects appear scarcely critical.

Compact high-Power ceramic slab laser

Lapucci A;Ciofini M
2005

Abstract

Preliminary tests are here reported, carried out on a compact and rugged diode pumped solid state (DPSS) laser for industrial applications. The laser design is based on a Neodimium doped slab shaped ceramic YAG medium. A maximum extraction of more than 320 W at a 44% slope efficiency level has been obtained with a simple half symmetric stable resonator scheme. Experimental data together with F.E.M. simulations indicate that power extraction can be scaled up to a multi-kilo Watt level with this extremely compact (overall dimensions: 160 x 100 x 60 mm) laser head geometry. A narrow transverse direction Beam Parameter Product (BPP) of the order of 3 mm.mrad is experimentally obtained. This enables the reasonable prediction of a good quality beam extraction adopting a stable multipass resonator or a hybrid stable-unstable resonator. Given the zig-zag resonator path, thermal lens effects appear scarcely critical.
2005
Istituto Nazionale di Ottica - INO
0-8194-5760-4
high-power lasers
solid-state lasers
ceramic laser
File in questo prodotto:
File Dimensione Formato  
prod_57971-doc_7456.pdf

solo utenti autorizzati

Descrizione: Articolo Pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 348.96 kB
Formato Adobe PDF
348.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/24057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact