The thermoacidophilic archaebacterium Sulfolobus acidocaldarius possesses a very unusual terminal oxidase. We report original kinetic experiments on membranes of this microorganism carried out by stopped flow, using time- resolved optical spectroscopy combined with singular value decomposition analysis. The reduced-oxidized kinetic difference spectrum of the Sulfolobus membranes is characterized by three significant peaks in the visible region at 605, 586, and 560 nm. The 605-nm peak and part of the 586-nm peak (cytochrome aa3-type quinol oxidase) are reduced synchronously by both ascorbate plus N,N,N',N'-tetramethyl-p-phenylen-diamine (TMPD) and dithionite, and they are very rapidly oxidized by molecular oxygen. A second pool of cytochromes seems to contribute to the 586-nm peak which is not reduced by ascorbate plus TMPD and reacts very slowly with dithionite. The b- type cytochromes (560 nm peak) are reduced by both reductants and are essentially 'non-autoxidizable' at room temperature. Only one CO binding site with spectral features, kinetic properties, and ligand affinity not very dissimilar from those of mammalian cytochrome oxidase can be detected in the ascorbate-reduced membranes. On the contrary, a second CO binding site having unusual properties for aa3 terminal oxidases can be detected in the dithionite-reduced membranes.

Sulfolobus acidocaldarius terminal oxidase. A kinetic investigation and its structural interpretation

Giuffrè A;
1994

Abstract

The thermoacidophilic archaebacterium Sulfolobus acidocaldarius possesses a very unusual terminal oxidase. We report original kinetic experiments on membranes of this microorganism carried out by stopped flow, using time- resolved optical spectroscopy combined with singular value decomposition analysis. The reduced-oxidized kinetic difference spectrum of the Sulfolobus membranes is characterized by three significant peaks in the visible region at 605, 586, and 560 nm. The 605-nm peak and part of the 586-nm peak (cytochrome aa3-type quinol oxidase) are reduced synchronously by both ascorbate plus N,N,N',N'-tetramethyl-p-phenylen-diamine (TMPD) and dithionite, and they are very rapidly oxidized by molecular oxygen. A second pool of cytochromes seems to contribute to the 586-nm peak which is not reduced by ascorbate plus TMPD and reacts very slowly with dithionite. The b- type cytochromes (560 nm peak) are reduced by both reductants and are essentially 'non-autoxidizable' at room temperature. Only one CO binding site with spectral features, kinetic properties, and ligand affinity not very dissimilar from those of mammalian cytochrome oxidase can be detected in the ascorbate-reduced membranes. On the contrary, a second CO binding site having unusual properties for aa3 terminal oxidases can be detected in the dithionite-reduced membranes.
1994
Istituto di Biologia e Patologia Molecolari - IBPM
ascorbic acid
carbon monoxide
cytochrome b
cytochrome c oxidase
dithionite
n
n
n'
n' tetramethyl 1
4 phenylenediamine
article
bacterial membrane
binding site
gram negative chemolithotrophic and methane producing bacteria
nonhuman
priority journal
spectroscopy
Ascorbic Acid
Carbon Monoxide
Dithionite
Kinetics
Oxidoreductases
Oxygen
Protein Binding
Protein Conformation
Sulfolobus acidocaldarius
Support
Non-U.S. Gov't
Tetramethylphenylenediamine
Archaea
Mammalia
Sulfolobus
Sulfolobus acidocaldarius
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/241519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact