The use of tank-treading as a means of propulsion for microswimmers in viscous shear flows is taken into exam. We discuss the possibility that a vesicle be able to control the drift in an external shear flow, by varying locally the bending rigidity of its own membrane. By analytical calculation in the quasi-spherical limit, the stationary shape and the orientation of the tank-treading vesicle in the external flow, are determined, working to lowest order in the membrane inhomogeneity. The membrane inhomogeneity acts in the shape evolution equation as an additional force term, that can be used to balance the effect of the hydrodynamic stresses, thus allowing the vesicle to assume shapes and orientations that would otherwise be forbidden. The vesicle shapes and orientations required for migration transverse to the flow, together with the bending rigidity profiles that would lead to such shapes and orientations, are determined. A simple model is presented, in which a vesicle is able to migrate up or down the gradient of a concentration field, by stiffening or softening of its membrane, in response to the variations in the concentration level experienced during tank-treading.

Tank-treading as a mean of propulsion in viscous shear flows

Piero Olla
2011

Abstract

The use of tank-treading as a means of propulsion for microswimmers in viscous shear flows is taken into exam. We discuss the possibility that a vesicle be able to control the drift in an external shear flow, by varying locally the bending rigidity of its own membrane. By analytical calculation in the quasi-spherical limit, the stationary shape and the orientation of the tank-treading vesicle in the external flow, are determined, working to lowest order in the membrane inhomogeneity. The membrane inhomogeneity acts in the shape evolution equation as an additional force term, that can be used to balance the effect of the hydrodynamic stresses, thus allowing the vesicle to assume shapes and orientations that would otherwise be forbidden. The vesicle shapes and orientations required for migration transverse to the flow, together with the bending rigidity profiles that would lead to such shapes and orientations, are determined. A simple model is presented, in which a vesicle is able to migrate up or down the gradient of a concentration field, by stiffening or softening of its membrane, in response to the variations in the concentration level experienced during tank-treading.
2011
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Vescicole
micronuotatori
fluidodinamica viscosa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/242775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact