Silk fibroin (SF), a protein core fibre from the silkworm Bombyx mori, has huge potential to become a sustainable, biocompatible, and biodegradable material platform that can pave the way towards the replacement of plastic in the fabrication of bio-derived materials for a variety of technological and biomedical applications. SF has remarkable mechanical flexibility, controllable biodegradability, biocompatibility and is capable of drug/doping inclusion, stabilization and release. However, the dielectric properties of SF limit its potential as a direct bioelectronic interface in biomedical devices intended to control the bioelectrical activity of the cell for regenerative purposes. In this work, a novel wet templating method is proposed to generate nanostructured, conductive Silk Fibroin (SF) composite films. We combine the unusual properties of SF, such as its mechanical properties, its convenience and biocompatibility with the electrical conductivity and stiffness of Single Walled Carbon Nanotubes (SWCNTs). The presented SF-SWCNT composite displays a periodic architecture where SWCNTs are regularly and homogeneously distributed in the SF protein matrix. The morphological and chemo-physical properties of the nanocomposite are analysed and defined by SEM, Raman Spectroscopy, ATR-IR, UFM and contact angle analyses. Notably, the SF-SWCNT composite film is conductive, showing additional functionality compared to the dielectric properties of the bare SF film. Finally, SF-SWCNT is biocompatible and enables the growth of primary rat Dorsal Root Ganglion (DRG) neurons. Collectively our results demonstrate that the nanostructured, conductive, robust and biocompatible SF-SWCNT composite can be fabricated using a wet templating method, paving the way towards the fabrication and development of silk-based electronic devices for use in bioelectronic and biomedical applications.

A nanostructured conductive bio-composite of silk fibroin-single walled carbon nanotubes

Dionigi Chiara;Posati Tamara;Benfenati Valentina;Ruani Giampiero;Dinelli Franco;Padeletti Giuseppina;Zamboni Roberto;Muccini Michele
2014

Abstract

Silk fibroin (SF), a protein core fibre from the silkworm Bombyx mori, has huge potential to become a sustainable, biocompatible, and biodegradable material platform that can pave the way towards the replacement of plastic in the fabrication of bio-derived materials for a variety of technological and biomedical applications. SF has remarkable mechanical flexibility, controllable biodegradability, biocompatibility and is capable of drug/doping inclusion, stabilization and release. However, the dielectric properties of SF limit its potential as a direct bioelectronic interface in biomedical devices intended to control the bioelectrical activity of the cell for regenerative purposes. In this work, a novel wet templating method is proposed to generate nanostructured, conductive Silk Fibroin (SF) composite films. We combine the unusual properties of SF, such as its mechanical properties, its convenience and biocompatibility with the electrical conductivity and stiffness of Single Walled Carbon Nanotubes (SWCNTs). The presented SF-SWCNT composite displays a periodic architecture where SWCNTs are regularly and homogeneously distributed in the SF protein matrix. The morphological and chemo-physical properties of the nanocomposite are analysed and defined by SEM, Raman Spectroscopy, ATR-IR, UFM and contact angle analyses. Notably, the SF-SWCNT composite film is conductive, showing additional functionality compared to the dielectric properties of the bare SF film. Finally, SF-SWCNT is biocompatible and enables the growth of primary rat Dorsal Root Ganglion (DRG) neurons. Collectively our results demonstrate that the nanostructured, conductive, robust and biocompatible SF-SWCNT composite can be fabricated using a wet templating method, paving the way towards the fabrication and development of silk-based electronic devices for use in bioelectronic and biomedical applications.
2014
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Istituto Nazionale di Ottica - INO
Silk fibroin (SF)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/245416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 34
social impact