In this article we report on a new hybrid (organic-inorganic) composite material based on hydrophilic, electrically inert and semi-transparent hydrotalcite (HT) nanoparticles and a pHneutral formulation of PEDOT:PSS. The application of thiscomposite material as electrically and optically active buffer layer in P3HT:PC61BM bulk heterojunction (BHJ) solar cells is reported. Two different synthetic routes are explored to obtain HTs having discoid shape, with a diameter of around 150-200 nm and a thickness of about 20 nm, to be easily embedded in about 50 nm thick PEDOT:PSS films. The good affinity between HTs and the sulfonate groups of the PEDOT:PSS allows to obtain homogeneous HTs/PEDOT:PSS films, for HT concentrations of 0.25% and 0.50% by weight (vs. PEDOT:PSS). At these particle loads the electrical and morphological features of doped and undoped PEDOT:PSS films are nearly identical, while providing a significant effect on the visible light scattering properties of the composite films. We demonstrate about 12% improvement in power conversion efficiency (PCE) for P3HT:PC61BM solar cells incorporating HTs in the PEDOT: PSS layer, which mainly originates from increased shortcircuit current densities (JSC ).

Efficiency enhancement of P3HT:PCBM solar cells containing scattering Zn-Al hydrotalcite nanoparticles in the PEDOT:PSS layer

Margherita Bolognesi;Marta Tessarolo;Tamara Posati;Valentina Benfenati;Mirko Seri;Giampiero Ruani;Michele Muccini
2013

Abstract

In this article we report on a new hybrid (organic-inorganic) composite material based on hydrophilic, electrically inert and semi-transparent hydrotalcite (HT) nanoparticles and a pHneutral formulation of PEDOT:PSS. The application of thiscomposite material as electrically and optically active buffer layer in P3HT:PC61BM bulk heterojunction (BHJ) solar cells is reported. Two different synthetic routes are explored to obtain HTs having discoid shape, with a diameter of around 150-200 nm and a thickness of about 20 nm, to be easily embedded in about 50 nm thick PEDOT:PSS films. The good affinity between HTs and the sulfonate groups of the PEDOT:PSS allows to obtain homogeneous HTs/PEDOT:PSS films, for HT concentrations of 0.25% and 0.50% by weight (vs. PEDOT:PSS). At these particle loads the electrical and morphological features of doped and undoped PEDOT:PSS films are nearly identical, while providing a significant effect on the visible light scattering properties of the composite films. We demonstrate about 12% improvement in power conversion efficiency (PCE) for P3HT:PC61BM solar cells incorporating HTs in the PEDOT: PSS layer, which mainly originates from increased shortcircuit current densities (JSC ).
2013
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
composite film
hydrotalcite
light scattering
bulkheterojunction OPV
PEDOT:PSS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/245419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact