Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of considerable technological importance but remains a challenge due to the amphoteric behavior of the dopant atoms. Here we show that placing a narrow GaAs quantum well in the AlAs shell effectively getters residual carbon acceptors leading to an unintentional p-type doping. Magneto-optical studies of such a GaAs/AlAs core-multishell NW reveal quantum confined emission. Theoretical calculations of NW electronic structure confirm quantum confinement of carriers at the core/shell interface due to the presence of ionized carbon acceptors in the 1 nm GaAs layer in the shell. Microphotoluminescence in high magnetic field shows a clear signature of avoided crossings of the n = 0 Landau level emission line with the n = 2 Landau level TO phonon replica. The coupling is caused by the resonant hole-phonon interaction, which points to a large two-dimensional hole density in the structure. © 2014 American Chemical Society.

Unintentional high-density p-type modulation doping of a GaAs/alas core-multishell nanowire

Bertoni A;Goldoni G;
2014

Abstract

Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of considerable technological importance but remains a challenge due to the amphoteric behavior of the dopant atoms. Here we show that placing a narrow GaAs quantum well in the AlAs shell effectively getters residual carbon acceptors leading to an unintentional p-type doping. Magneto-optical studies of such a GaAs/AlAs core-multishell NW reveal quantum confined emission. Theoretical calculations of NW electronic structure confirm quantum confinement of carriers at the core/shell interface due to the presence of ionized carbon acceptors in the 1 nm GaAs layer in the shell. Microphotoluminescence in high magnetic field shows a clear signature of avoided crossings of the n = 0 Landau level emission line with the n = 2 Landau level TO phonon replica. The coupling is caused by the resonant hole-phonon interaction, which points to a large two-dimensional hole density in the structure. © 2014 American Chemical Society.
2014
Istituto Nanoscienze - NANO
2D confinement
GaAs core/shell nanowires
resonant phonon coupling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? ND
social impact