We study the collective excitations and inelastic light-scattering cross section of an electron gas confined in a GaAs/AlGaAs coaxial quantum well. These systems can be engineered in a core-multishell nanowire and inherit the hexagonal symmetry of the underlying nanowire substrate. As a result, the electron gas forms both quasi-one-dimensional channels and quasi-two-dimensional channels at the quantum-well bents and facets, respectively. Calculations are performed within the random-phase approximation and time-dependent density functional theory approaches. We derive symmetry arguments which allow one to enumerate and classify charge and spin excitations and determine whether excitations may survive to Landau damping. We also derive inelastic light-scattering selection rules for different scattering geometries. Computational issues stemming from the need to use a symmetry-compliant grid are also investigated systematically. © 2014 American Physical Society.

Symmetries in the collective excitations of an electron gas in core-shell nanowires

Bertoni A;Goldoni G
2014

Abstract

We study the collective excitations and inelastic light-scattering cross section of an electron gas confined in a GaAs/AlGaAs coaxial quantum well. These systems can be engineered in a core-multishell nanowire and inherit the hexagonal symmetry of the underlying nanowire substrate. As a result, the electron gas forms both quasi-one-dimensional channels and quasi-two-dimensional channels at the quantum-well bents and facets, respectively. Calculations are performed within the random-phase approximation and time-dependent density functional theory approaches. We derive symmetry arguments which allow one to enumerate and classify charge and spin excitations and determine whether excitations may survive to Landau damping. We also derive inelastic light-scattering selection rules for different scattering geometries. Computational issues stemming from the need to use a symmetry-compliant grid are also investigated systematically. © 2014 American Physical Society.
2014
Istituto Nanoscienze - NANO
SEMICONDUCTOR QUANTUM-WELLS; CHARGE-DENSITY EXCITATIONS; INELASTIC LIGHT-SCATTERING; ONE-DIMENSIONAL SYSTEMS; III-V NANOWIRES; INTERSUBBAND EXCITATIONS; ELEMENTARY EXCITATIONS; RAMAN-SPECTROSCOPY; FOURIER-TRANSFORM; MAGNETIC-FIELD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact