The interface spin coupling mechanism is studied in a hybrid structure made of Fe phthalocyanine molecules sublimed in ultrahigh vacuum on graphene grown on the magnetic substrate Ni(111). By using synchrotron X-ray magnetic circular dichroism, the field-dependent magnetization of the isolated FePc molecules and of the Ni substrate has been measured at low temperature (8 K). Along with density functional theory calculations, the role of the graphene interlayer in transmitting the magnetic coupling is addressed. Both experiments and theory show a ferromagnetic coupling between the molecules and the substrate which is weakened by the insertion of graphene. DFT calculations indicate that the key role is played by the ? orbitals of graphene, which hybridize with the underlying magnetic Ni, giving rise to a sizable spin polarized continuum at the molecular interface. The resulting overlap with the Fe orbitals favors a direct coupling of ferromagnetic nature, as evidenced by our spin density distribution plots. © 2014 American Chemical Society.

Ferromagnetic exchange coupling between Fe phthalocyanine and Ni(111) surface mediated by the extended states of graphene

A Candini;Bellini V;Corradini V;Biagi R;De Renzi V;del Pennino U;Affronte M
2014

Abstract

The interface spin coupling mechanism is studied in a hybrid structure made of Fe phthalocyanine molecules sublimed in ultrahigh vacuum on graphene grown on the magnetic substrate Ni(111). By using synchrotron X-ray magnetic circular dichroism, the field-dependent magnetization of the isolated FePc molecules and of the Ni substrate has been measured at low temperature (8 K). Along with density functional theory calculations, the role of the graphene interlayer in transmitting the magnetic coupling is addressed. Both experiments and theory show a ferromagnetic coupling between the molecules and the substrate which is weakened by the insertion of graphene. DFT calculations indicate that the key role is played by the ? orbitals of graphene, which hybridize with the underlying magnetic Ni, giving rise to a sizable spin polarized continuum at the molecular interface. The resulting overlap with the Fe orbitals favors a direct coupling of ferromagnetic nature, as evidenced by our spin density distribution plots. © 2014 American Chemical Society.
2014
Istituto Nanoscienze - NANO
METAL PHTHALOCYANINES; PORPHYRIN MOLECULES; EPITAXIAL GRAPHENE; SUBSTRATE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact