The world's energy consumption has doubled over the past 40 years and it is estimated that one-third comes from industry. Therefore, an increase of the efficiency in energy use in industries would greatly benefit the sustainability of the factories and consequently of the whole environment and society. A factory is a complex entity constituted by possibly networked plants which produce a set of products performing several processes requiring a set of production resources. All these aspects need to be considered as a whole especially is sustainability is of concern. However, this need implies the collaboration between several actors and tools having remarkably different competences and scopes. This paper presents a holistic framework, named Sustainable Factory Semantic Framework (SuFSeF), aiming at integrating digital models and tools to support the design and management of a sustainable factory thanks to its complete virtual representation. This framework extends the Virtual Factory Framework (VFF), outcome of a European research project, by characterizing the industrial building and considering energy and environmental sustainability of the factory during its lifecycle. Both commercial and prototypal software tools can be integrated in the framework. Specifically, the attention will be focused on tools to support the sustainability assessment during the factory design phase, 3D design tools, and the monitoring of the key energy-environmental indicators during the factory operating phase.

A semantic framework for sustainable factories

W Terkaj;L Danza;A Devitofrancesco;S Gagliardo;M Ghellere;F Giannini;M Monti;M Sacco;F Salamone
2014

Abstract

The world's energy consumption has doubled over the past 40 years and it is estimated that one-third comes from industry. Therefore, an increase of the efficiency in energy use in industries would greatly benefit the sustainability of the factories and consequently of the whole environment and society. A factory is a complex entity constituted by possibly networked plants which produce a set of products performing several processes requiring a set of production resources. All these aspects need to be considered as a whole especially is sustainability is of concern. However, this need implies the collaboration between several actors and tools having remarkably different competences and scopes. This paper presents a holistic framework, named Sustainable Factory Semantic Framework (SuFSeF), aiming at integrating digital models and tools to support the design and management of a sustainable factory thanks to its complete virtual representation. This framework extends the Virtual Factory Framework (VFF), outcome of a European research project, by characterizing the industrial building and considering energy and environmental sustainability of the factory during its lifecycle. Both commercial and prototypal software tools can be integrated in the framework. Specifically, the attention will be focused on tools to support the sustainability assessment during the factory design phase, 3D design tools, and the monitoring of the key energy-environmental indicators during the factory operating phase.
2014
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Istituto per le Tecnologie della Costruzione - ITC
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Data modelling
Life cycle analysis
Sustainable factory
Virtual factory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/249603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact