We propose the use of learning to rank techniques to shorten query sessions by maximizing the probability that the query we predict is the final query of the current search session. We present a preliminary evaluation showing that this approach is a promising research direction.

Learning to shorten query sessions.

Muntean C;Nardini F M;Silvestri F;
2013

Abstract

We propose the use of learning to rank techniques to shorten query sessions by maximizing the probability that the query we predict is the final query of the current search session. We present a preliminary evaluation showing that this approach is a promising research direction.
2013
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4503-2038-2
Query prediction
GBRT
Learning to rank
File in questo prodotto:
File Dimensione Formato  
prod_277508-doc_78390.pdf

accesso aperto

Descrizione: Learning to Shorten Query Sessions
Tipologia: Versione Editoriale (PDF)
Dimensione 208.99 kB
Formato Adobe PDF
208.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/249719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact