Boron nitride nanotubes (BNNTs) are intriguing nanomaterials with a wide range of potential biomedical applications. The assessment of BNNT interactions with biological systems, at both the cellular and subcellular levels, is an essential starting point for determining their bio-safety. We explore the effects of increasing concentrations of GC-BNNTs (0-100 g/mL) on human vein endothelial cells (HUVECs), testing cell toxicity, proliferation, cytoskeleton integrity, cell activation and DNA damage. No significant changes were observed in cell viability, cytoskeleton integrity or DNA damage. Only a modest reduction in cell viability, tested by trypan blue assay, and the increased expression of vascular adhesion molecule-1, a marker of cell activation, were detected at the highest concentration used (100 g/mL). Taken together, these findings indicate that GC-BNNTs do not affect endothelial cell biology, and are a promising first step in further investigation of their application potential in vascular targeting, imaging, and drug delivery.

Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells

Del Turco Serena;Cervelli Tiziana;Basta Giuseppina;
2013

Abstract

Boron nitride nanotubes (BNNTs) are intriguing nanomaterials with a wide range of potential biomedical applications. The assessment of BNNT interactions with biological systems, at both the cellular and subcellular levels, is an essential starting point for determining their bio-safety. We explore the effects of increasing concentrations of GC-BNNTs (0-100 g/mL) on human vein endothelial cells (HUVECs), testing cell toxicity, proliferation, cytoskeleton integrity, cell activation and DNA damage. No significant changes were observed in cell viability, cytoskeleton integrity or DNA damage. Only a modest reduction in cell viability, tested by trypan blue assay, and the increased expression of vascular adhesion molecule-1, a marker of cell activation, were detected at the highest concentration used (100 g/mL). Taken together, these findings indicate that GC-BNNTs do not affect endothelial cell biology, and are a promising first step in further investigation of their application potential in vascular targeting, imaging, and drug delivery.
2013
Istituto di Fisiologia Clinica - IFC
Endothelial cells
Boron nitride nanotubes
In vitro testing
Cell activation
File in questo prodotto:
File Dimensione Formato  
prod_314189-doc_91018.pdf

accesso aperto

Descrizione: Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/253741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 40
social impact