In this paper we consider the problem of image content recognition and we address it by using local features and kNN based classification strategies. Specifically, we define a number of image similarity functions relying on local features comparing their performance when used with a kNN classifier. Furthermore, we compare the whole image similarity approach with a novel two steps kNN based classification strategy that first assigns a label to each local feature in the document to be classified and then uses this information to assign a label to the whole image. We perform our experiments solving the task of recognizing landmarks in photos.
On kNN classification and local feature based similarity functions
Amato G;Falchi F
2013
Abstract
In this paper we consider the problem of image content recognition and we address it by using local features and kNN based classification strategies. Specifically, we define a number of image similarity functions relying on local features comparing their performance when used with a kNN classifier. Furthermore, we compare the whole image similarity approach with a novel two steps kNN based classification strategy that first assigns a label to each local feature in the document to be classified and then uses this information to assign a label to the whole image. We perform our experiments solving the task of recognizing landmarks in photos.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_278890-doc_78645.pdf
solo utenti autorizzati
Descrizione: On kNN classification and local feature based similarity functions
Tipologia:
Versione Editoriale (PDF)
Dimensione
602.1 kB
Formato
Adobe PDF
|
602.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


