In this paper we consider the problem of image content recognition and we address it by using local features and kNN based classification strategies. Specifically, we define a number of image similarity functions relying on local features comparing their performance when used with a kNN classifier. Furthermore, we compare the whole image similarity approach with a novel two steps kNN based classification strategy that first assigns a label to each local feature in the document to be classified and then uses this information to assign a label to the whole image. We perform our experiments solving the task of recognizing landmarks in photos.

On kNN classification and local feature based similarity functions

Amato G;Falchi F
2013

Abstract

In this paper we consider the problem of image content recognition and we address it by using local features and kNN based classification strategies. Specifically, we define a number of image similarity functions relying on local features comparing their performance when used with a kNN classifier. Furthermore, we compare the whole image similarity approach with a novel two steps kNN based classification strategy that first assigns a label to each local feature in the document to be classified and then uses this information to assign a label to the whole image. We perform our experiments solving the task of recognizing landmarks in photos.
2013
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-642-29965-0
Image classification
Local feature
Multimedia information retrieval
kNN
H.3.3 Information Search and Retrieval
File in questo prodotto:
File Dimensione Formato  
prod_278890-doc_78645.pdf

solo utenti autorizzati

Descrizione: On kNN classification and local feature based similarity functions
Tipologia: Versione Editoriale (PDF)
Dimensione 602.1 kB
Formato Adobe PDF
602.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/254821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact