Chronic nicotine exposure gives rise to neural adaptations that change whole cell physiology and behaviour mainly by interacting with neuronal nicotinic acetylcholine receptors (nAChRs). The major nicotine-induced neuroadaptation is the up-regulation of brain nAChRs by means of cell-delimited post-translational mechanisms. We review what is known of the processes regulating nAChR assembly, degradation and trafficking, and how nicotine-induced modulation of these processes leads to nAChR up-regulation and changes in downstream neuronal plasticity at molecular, cellular and circuit level.

Biogenesis, trafficking and up-regulation of nicotinic ACh receptors

Sara Francesca Colombo;Cecilia Gotti
2013

Abstract

Chronic nicotine exposure gives rise to neural adaptations that change whole cell physiology and behaviour mainly by interacting with neuronal nicotinic acetylcholine receptors (nAChRs). The major nicotine-induced neuroadaptation is the up-regulation of brain nAChRs by means of cell-delimited post-translational mechanisms. We review what is known of the processes regulating nAChR assembly, degradation and trafficking, and how nicotine-induced modulation of these processes leads to nAChR up-regulation and changes in downstream neuronal plasticity at molecular, cellular and circuit level.
2013
Istituto di Neuroscienze - IN -
: Nicotinic receptors; nicotine; receptor assembly; receptor up-regulation; ER associated degradation; receptor trafficking
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact